Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Sterkiella histriomuscorum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7115 KiB  
Article
Identification and Feeding Characterization of Sterkiella histriomuscorum (Protozoa, Ciliophora, Hypotrichia) Isolated from Outdoor Mass Culture of Scenedesmus dimorphus
by Mengyun Wang, Pei Chen, Hongxia Wang, Qiong Deng, Xiaonan Zhang, Guoqing Yuan, Mixue Jiang, Lingling Zheng, Zixuan Hu, Zemao Gu, Denis V. Tikhonenkov and Yingchun Gong
Microorganisms 2025, 13(5), 1016; https://doi.org/10.3390/microorganisms13051016 - 28 Apr 2025
Viewed by 493
Abstract
Herbivorous protistan grazers are ubiquitous and abundant in marine and temperate freshwater environments. However, little is known about the algivorous ciliates and their feeding habits in outdoor mass algal cultures. In this study, we report on one hypotrich ciliate, identified as Sterkiella histriomuscorum [...] Read more.
Herbivorous protistan grazers are ubiquitous and abundant in marine and temperate freshwater environments. However, little is known about the algivorous ciliates and their feeding habits in outdoor mass algal cultures. In this study, we report on one hypotrich ciliate, identified as Sterkiella histriomuscorum, from the outdoor mass culture of Scenedesmus in Arizona, USA. A long-term field survey revealed that this species often occurs in Scenedesmus culture in spring and summer, and can graze very heavily on Scenedesmus cells. By isolating Sterkiella cells and then observing them via light microscopy and electron microscopy, detailed information about the morphology, ultrastructure, excystment process, and feeding characteristics of the ciliate was obtained. Specifically, it seems that S. histriomuscorum has a range of different strategies for excystment, and the sharp change in the ion concentration in the environment around the cyst results in osmotic shock, which likely facilitates the excystment. Feeding experiments revealed that S. histriomuscorum preferred to graze on chlorophytes as well as the diatom Phaeodactylum tricornutum and had no interaction with chrysophytes or cyanobacteria. Molecular phylogenetic analysis based on the SSU rRNA gene sequence indicated that both the genus Sterkiella and the species S. histriomuscorum are non-monophyletic. The information obtained from this study will help advance our understanding of the biodiversity and ecological function of S. histriomuscorum, and will also be very useful in the development of early warning systems and control measures for preventing or treating this contaminant in microalgal mass cultures. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Back to TopTop