Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Southwell’s method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5898 KB  
Article
Evaluation of the Influence of Bolt Fastener Spacing on the Elastic Critical Load from the Lateral-Torsional Buckling Condition of Built-Up Bending Members
by Rafał Piotrowski and Andrzej Szychowski
Materials 2024, 17(14), 3392; https://doi.org/10.3390/ma17143392 - 9 Jul 2024
Viewed by 1053
Abstract
In an experimental study of two-branched beams bent transversely about the major stiffness axis, the elastic critical load from the lateral-torsional buckling condition was determined. The tests were conducted on simply supported two-branch beam models with a built-up section consisting of two cold-formed [...] Read more.
In an experimental study of two-branched beams bent transversely about the major stiffness axis, the elastic critical load from the lateral-torsional buckling condition was determined. The tests were conducted on simply supported two-branch beam models with a built-up section consisting of two cold-formed channel members (2C) bolted back-to-back. The bolts were located at the mid-height of the built-up cross-section. Five groups of members differing in longitudinal bolt spacing were examined. The models were gravitationally loaded (using ballast) at the centre of the beam span. This approach eliminated the undesirable effect of the lateral support of the beam, e.g., by the actuator head. The critical load, measured by the concentrated transverse force (Pz,cr), was determined using the modified Southwell method. It has been experimentally shown that, in built-up beams, there is an influence of bolt spacing on the elastic critical load from the lateral-torsional buckling condition. The lowest critical load capacity and the most non-linear behaviour of the built-up member were observed in beams bolted with only three bolts (at the supports and in the middle of the span). However, the experimental results obtained in this study show that increasing the number of bolts above a certain level (in the case of the tested models, it was seven bolts) does not result in a further increase in the critical load, which is a surprising result. The obtained values were 15 to 23% lower than the critical load determined numerically by the finite element method (LTBeamN) for an analogous element with a uniform I-section. Full article
Show Figures

Figure 1

20 pages, 2567 KB  
Article
A Non-Destructive Method for Predicting Critical Load, Critical Thickness and Service Life for Corroded Spherical Shells under Uniform External Pressure Based on NDT Data
by Cheng Huijuan Liu and Giuseppe Lacidogna
Appl. Sci. 2023, 13(7), 4172; https://doi.org/10.3390/app13074172 - 24 Mar 2023
Cited by 4 | Viewed by 2138
Abstract
A pressurized spherical shell that is continuously corroded will likely buckle and lose its stability. There are many analytical and numerical methods to study this problem (critical load, critical thickness, and service life), but the friendliness (operability) in engineering test applications is still [...] Read more.
A pressurized spherical shell that is continuously corroded will likely buckle and lose its stability. There are many analytical and numerical methods to study this problem (critical load, critical thickness, and service life), but the friendliness (operability) in engineering test applications is still not ideal. Therefore, in this paper, we propose a new non-destructive method by combining the Southwell non-destructive procedure with the stable analysis method of corroded spherical thin shells. When used carefully, it can estimate the critical load (critical thickness) and service life of these thin shells. Furthermore, its procedure proved to be more practical than existing methods; it can be easily mastered, applied, and generalized in most engineering tests. When used properly, its accuracy is acceptable in the field of engineering estimations. In the context of the high demand for non-destructive analysis in industry, it may be of sufficient potential value to be used as a reference for existing estimating methods based on NDT data. Full article
(This article belongs to the Special Issue Ultrasonic Modelling for Non-destructive Testing)
Show Figures

Figure 1

16 pages, 4587 KB  
Article
A New Method for Evaluating the Bearing Capacity of the Bridge Pile Socketed in the Soft Rock
by Yao Lu, Dejian Li, Shiwei Jia and Kai Wang
Appl. Sci. 2021, 11(13), 5923; https://doi.org/10.3390/app11135923 - 25 Jun 2021
Cited by 4 | Viewed by 3046
Abstract
Aiming at the rock-socketed pile in the soft rock area, this paper studies the inherent constitutive relationship between the vertical restraint stiffness at the pier bottom and the bearing capacity of the pile foundation. A new method to evaluate the bearing capacity of [...] Read more.
Aiming at the rock-socketed pile in the soft rock area, this paper studies the inherent constitutive relationship between the vertical restraint stiffness at the pier bottom and the bearing capacity of the pile foundation. A new method to evaluate the bearing capacity of the pile foundation is proposed. Based on the Rayleigh energy method and the Southwell frequency synthesis method, the analytical expression of the vertical vibration fundamental frequency of the pier was calculated, and the constraint stiffness expression of the pier bottom was derived. By investigating the impact of parameters on the bearing capacity coefficient of the pile foundation, the fitting formula of the bearing capacity coefficient was obtained by multiple linear regression. Then, with this method, the vertical fundamental frequency of the pier was obtained through a field dynamic test to calculate the vertical constraint stiffness and evaluate the bearing capacity of the rock-socketed pile in the soft rock area. This method can overcome the shortcomings of the traditional static load test method, such as the high cost, long cycle, and poor representativeness. Finally, this method’s accuracy was verified by comparing field measurements and finite element simulation results. The results show that the difference between the code design constraint stiffness and the constraint stiffness by the frequency synthesis method was about 0.7%, and the bearing capacity difference between the analytical solution and the numerical simulation was small. The new method is accurate and effective. Full article
(This article belongs to the Special Issue Advances on Structural Engineering, Volume II)
Show Figures

Figure 1

14 pages, 4173 KB  
Article
Structural Performance of HDPE and WPC Lumber Components Used in Aquacultural Geodesic Spherical Cages
by Murtada Abass A. Alrubaie, Douglas J. Gardner and Roberto A. Lopez-Anido
Polymers 2020, 12(1), 26; https://doi.org/10.3390/polym12010026 - 21 Dec 2019
Cited by 8 | Viewed by 4503
Abstract
Based on previous research, a novel wood–plastic composite (WPC) lumber has shown potential to replace high-density polyethylene (HDPE) lumber in the construction of aquacultural geodesic spherical cage structures. Six HDPE and six WPC assemblies, which are representative of typical full-size cage dimensions, were [...] Read more.
Based on previous research, a novel wood–plastic composite (WPC) lumber has shown potential to replace high-density polyethylene (HDPE) lumber in the construction of aquacultural geodesic spherical cage structures. Six HDPE and six WPC assemblies, which are representative of typical full-size cage dimensions, were fabricated by bolting pairs of triangular panel components made with connected struts. Half of the panel assemblies had a plastic-coated steel wire mesh to simulate the actual restraint in field applications of the cages. The objective of the research was to characterize the structural performance of the panel assemblies under compressive loading. To determine the critical buckling load for the panel assemblies made from WPC and HDPE struts with and without wire mesh, Southwell’s method was implemented. A two-dimensional (2D) linear finite element analysis model was developed to determine axial forces in the struts of the panel assembly for the applied load and boundary conditions. This model was used to determine strut compressive forces corresponding to the Southwell’s method buckling load and the experimental failure load. It was found that the wire mesh increased the load capacity of both HDPE and WPC panel assemblies by a factor of two. The typical failure mode of the panels made from HDPE lumber struts, with and without wire mesh, was buckling of the struts, whereas the failure mode of the WPC panels, with and without wire mesh, was fracture at the notched section corresponding to the location of the bolts. The load capacity of the panel assemblies made from WPC lumber struts was three times and 2.5 times higher than the load capacity of the panel assemblies made from HDPE lumber struts with and without wire mesh, respectively. Full article
(This article belongs to the Special Issue Advances in Wood Composites)
Show Figures

Figure 1

Back to TopTop