Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Sinian system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 13661 KB  
Review
Ultra-Deep Oil and Gas Geological Characteristics and Exploration Potential in the Sichuan Basin
by Gang Zhou, Zili Zhang, Zehao Yan, Qi Li, Hehe Chen and Bingjie Du
Appl. Sci. 2025, 15(21), 11380; https://doi.org/10.3390/app152111380 - 24 Oct 2025
Viewed by 1076
Abstract
Judging from the current global exploration trend, ultra-deep layers have become the main battlefield for energy exploration. China has made great progress in the ultra-deep field in recent decades, with the Tarim Basin and Sichuan Basin as the focus of exploration. The Sichuan [...] Read more.
Judging from the current global exploration trend, ultra-deep layers have become the main battlefield for energy exploration. China has made great progress in the ultra-deep field in recent decades, with the Tarim Basin and Sichuan Basin as the focus of exploration. The Sichuan Basin is a large superimposed gas-bearing basin that has experienced multiple tectonic movements and has developed multiple sets of reservoir–caprock combinations vertically. Notably, the multi-stage platform margin belt-type reservoirs of the Sinian–Lower Paleozoic exhibit inherited and superimposed development. Source rocks from the Qiongzhusi, Doushantuo, and Maidiping formations are located in close proximity to reservoirs, creating a complex hydrocarbon supply system, resulting in vertical and lateral migration paths. The structural faults connect the source and reservoir, and the source–reservoir–caprock combination is complete, with huge exploration potential. At the same time, the ultra-deep carbonate rock structure in the basin is weakly deformed, the ancient closures are well preserved, and the ancient oil reservoirs are cracked into gas reservoirs in situ, with little loss, which is conducive to the large-scale accumulation of natural gas. Since the Nvji well produced 18,500 cubic meters of gas per day in 1979, the study of ultra-deep layers in the Sichuan Basin has begun. Subsequently, further achievements have been made in the Guanji, Jiulongshan, Longgang, Shuangyushi, Wutan and Penglai gas fields. Since 2000, two trillion cubic meters of exploration areas have been discovered, with huge exploration potential, which is an important area for increasing production by trillion cubic meters in the future. Faced with the ultra-deep high-temperature and high-pressure geological environment and the complex geological conditions formed by multi-stage superimposed tectonic movements, how do we understand the special geological environment of ultra-deep layers? What geological processes have the generation, migration and enrichment of ultra-deep hydrocarbons experienced? What are the laws of distribution of ultra-deep oil and gas reservoirs? Based on the major achievements and important discoveries made in ultra-deep oil and gas exploration in recent years, this paper discusses the formation and enrichment status of ultra-deep oil and gas reservoirs in the Sichuan Basin from the perspective of basin structure, source rocks, reservoirs, caprocks, closures and preservation conditions, and provides support for the optimization of favorable exploration areas in the future. Full article
Show Figures

Figure 1

21 pages, 4313 KB  
Article
Optimization and Practice of Deep Carbonate Gas Reservoir Acidizing Technology in the Sinian System Formation of Sichuan Basin
by Song Li, Jian Yang, Weihua Chen, Zhouyang Wang, Hongming Fang, Yang Wang and Xiong Zhang
Processes 2025, 13(8), 2591; https://doi.org/10.3390/pr13082591 - 16 Aug 2025
Cited by 1 | Viewed by 890
Abstract
The gas reservoir of the Sinian Dengying Formation (Member 4) in Sichuan Basin exhibits extensive development of inter-clast dissolution pores and vugs within its carbonate reservoirs, characterized by low porosity (average 3.21%) and low permeability (average 2.19 mD). With the progressive development of [...] Read more.
The gas reservoir of the Sinian Dengying Formation (Member 4) in Sichuan Basin exhibits extensive development of inter-clast dissolution pores and vugs within its carbonate reservoirs, characterized by low porosity (average 3.21%) and low permeability (average 2.19 mD). With the progressive development of the Moxi (MX)structure, the existing stimulation techniques require further optimization based on the specific geological characteristics of these reservoirs. Through large-scale true tri-axial physical simulation experiments, this study systematically evaluated the performance of three principal acid systems in reservoir stimulation: (1) Self-generating acid systems, which enhance etching through the thermal decomposition of ester precursors to provide sustained reactive capabilities. (2) Gelled acid systems, characterized by high viscosity and effectiveness in reducing breakdown pressure (18~35% lower than conventional systems), are ideal for generating complex fracture networks. (3) Diverting acid systems, designed to improve fracture branching density by managing fluid flow heterogeneity. This study emphasizes hybrid acid combinations, particularly self-generating acid prepad coupled with gelled acid systems, to leverage their synergistic advantages. Field trials implementing these optimized systems revealed that conventional guar-based fracturing fluids demonstrated 40% higher breakdown pressures compared to acid systems, rendering hydraulic fracturing unsuitable for MX reservoirs. Comparative analysis confirmed gelled acid’s superiority over diverting acid in tensile strength reduction and fracture network complexity. Field implementations using reservoir-quality-adaptive strategies—gelled acid fracturing for main reservoir sections and integrated self-generating acid prepad + gelled acid systems for marginal zones—demonstrated the technical superiority of the hybrid system under MX reservoir conditions. This optimized protocol enhanced fracture length by 28% and stimulated reservoir volume by 36%, achieving a 36% single-well production increase. The technical framework provides an engineered solution for productivity enhancement in deep carbonate gas reservoirs within the G-M structural domain, with particular efficacy for reservoirs featuring dual low-porosity and low-permeability characteristics. Full article
Show Figures

Figure 1

15 pages, 24596 KB  
Article
Deep Geothermal Resources with Respect to Power Generation Potential of the Sinian–Cambrian Formation in Western Chongqing City, Eastern Sichuan Basin, China
by Xiaochuan Wu, Wei Wang, Lin Zhang, Jinxi Wang, Yuelei Zhang and Ye Zhang
Energies 2024, 17(16), 4045; https://doi.org/10.3390/en17164045 - 15 Aug 2024
Cited by 1 | Viewed by 1763
Abstract
The Rongchang–Dazu region in western Chongqing (eastern Sichuan Basin, China), known for its seismic activity, is a promising area for deep geothermal resource development; however, practical development is limited. Key geological understandings, such as heat flux, geothermal gradients, the nature of heat sources, [...] Read more.
The Rongchang–Dazu region in western Chongqing (eastern Sichuan Basin, China), known for its seismic activity, is a promising area for deep geothermal resource development; however, practical development is limited. Key geological understandings, such as heat flux, geothermal gradients, the nature of heat sources, thermal reservoir rock characteristics, and the classification of geothermal resources, remain in need of further study. In this work, the targeted area is surrounded by Sinian–Cambrian carbonate gas fields. An analysis of the deep geothermal prospects was conducted using exploration and development data from the Gaoshiti–Moxi gas fields within the Longwangmiao and Dengying Formations. The results indicate that the Rongchang–Dazu area has relatively high heat flow values and geothermal gradients within the Sichuan Basin, correlating with fault structure and seismic activity. Gas test data confirm that the Longwangmiao Formation in the study area reaches depths of 4000 to 4500 metres and exhibits anomalous pressures and temperatures exceeding 140 °C. Meanwhile, the Dengying Formation of the Sinian system lies at depths of 5000 to 5500 metres, with normal pressure, minimal water production, and temperatures exceeding 150 °C, characterising it as a dry-hot rock resource. Adjacent to western Chongqing, the Gaoshiti area within the Longwangmiao Formation, with an estimated flow rate of 100 kg/s, shows that the dynamic investment payback period is significantly shorter than the estimated 30-year life of a geothermal power plant, indicating strong economic viability. Deep geothermal resource development aids in conserving gas resources and enhancing the energy mix in western Chongqing. Future research should prioritise understanding the links between basement faults, seismic activity, and heat flow dynamics. Full article
Show Figures

Figure 1

21 pages, 12703 KB  
Article
Metallogenic Model for Pb-Zn Deposits in Clastic Rocks of the Dahai Mining Area, Northeast Yunnan: Evidence from H-O-S-Sr-Pb Isotopes
by Hongsheng Gong, Runsheng Han, Peng Wu, Gang Chen and Ling Ma
Minerals 2023, 13(10), 1343; https://doi.org/10.3390/min13101343 - 20 Oct 2023
Cited by 1 | Viewed by 2091
Abstract
The Dahai Pb-Zn mining area is located in the northwestern Pb-Zn district in northeastern Yunnan Province in the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic triangle (SYGT), east of the Xiaojiang fault. Numerous Pb-Zn deposits (spots) occur in clastic rocks in this area. In this study, the [...] Read more.
The Dahai Pb-Zn mining area is located in the northwestern Pb-Zn district in northeastern Yunnan Province in the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic triangle (SYGT), east of the Xiaojiang fault. Numerous Pb-Zn deposits (spots) occur in clastic rocks in this area. In this study, the Maliping, Laoyingqing, and Jinniuchang Pb-Zn deposits, representative clastic rocks in the Dahai mining area, were selected as research objects. The results of H-O-S-Sr-Pb isotope analyses show that the three deposits mainly formed through the mixing of a basinal brine with a hydrothermal fluid derived from deep within the underlying (deformed) basement, and brines leached organic matter from wall rocks. The δ34S values range from −2.62–30.30‰. The S isotope results show two different sources of reduced S: one in the Laoyingqing deposit derived from the S reduction generated by the pyrolysis of sulfur-bearing organic matter in the carbonaceous slate of the Kunyang Group, and the second in the Maliping and Jinniuchang deposits derived from the S reduction generated by the thermochemical sulfur reduction (TSR) of seawater sulfate in the Lower Cambrian Yuhucun Formation and Sinian Dengying Formation. The Pb isotope results show that the Pb sources of the three deposits are derived from basement rocks (Kunyang Group) with a small portion derived from Devonian–Permian carbonate rocks and Dengying Formation dolomite, both of which have undergone homogenization during mineralization. The Sr content varied from 0.09629 to 0.2523 × 10−6, and the study shows that the main source of Sr is a mixture of ore-forming fluid flowing through basement rocks (Kunyang Group) and through sedimentary cover. However, most of the Sr in the Maliping deposit is derived from marine carbonate, and in the Laoyingqing deposit, it is provided by basement rocks (Kunyang Group). Based on a comparative study of the deposits, the Pb-Zn deposits in the clastic rocks of the Dahai mining area and the SYGT belong to the same metallogenic system and were formed under the same metallogenic geological background. Finally, a unified metallogenic model of the two types of fluid migration and mixed mineralization of the Pb-Zn deposit in clastic rocks of the Dahai mining area is proposed. The metallogenic model provides a basis for the study of the Pb-Zn metallogenic system and guidance for deep and peripheral prospecting in this area. Full article
Show Figures

Figure 1

21 pages, 9086 KB  
Article
Metallogenesis and Formation of the Maliping Pb-Zn Deposit in Northeastern Yunnan: Constraints from H-O Isotopes, Fluid Inclusions, and Trace Elements
by Yongsheng Yao, Hongsheng Gong, Runsheng Han, Changqing Zhang, Peng Wu and Gang Chen
Minerals 2023, 13(6), 780; https://doi.org/10.3390/min13060780 - 7 Jun 2023
Cited by 2 | Viewed by 2366
Abstract
The Maliping large-scale Pb-Zn deposit is located in the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic triangle area (SYGT), where the Pb-Zn ore body is hosted in the interlayer fracture zone at the interface between siliceous cataclastic dolomite and clastic rocks in the Lower Cambrian Yuhucun [...] Read more.
The Maliping large-scale Pb-Zn deposit is located in the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic triangle area (SYGT), where the Pb-Zn ore body is hosted in the interlayer fracture zone at the interface between siliceous cataclastic dolomite and clastic rocks in the Lower Cambrian Yuhucun Formation and is tectonically driven. Unlike other Pb-Zn deposits hosted in the Sinian and Carboniferous carbonate rocks in the area, the metallogenic mechanism and deep and peripheral ore prospecting prediction research require further exploration. In this study, representative samples of a typical orebody profile were systematically collected, and microthermometry of fluid inclusions and H-O isotopes and metal sulfide trace element analyses were performed. The main findings were as follows: (1) The fluid inclusion study showed that the ore-forming fluids have vapor-rich phase reduction characteristics of medium-low temperature, salinity, and density. (2) H-O isotopic studies showed that the ore-forming fluids are derived from the mixing of deep-source fluids flowing through the deep fold basement (Kunyang Group) and organic containing basin brine. (3) Rare earth element (REE) characteristics indicate that the ore-forming materials were primarily derived from the folded basement (Kunyang Group). (4) The trace element study showed that sphalerite is relatively enriched in Cu, Cd, Ga, and Ge, while depleted in Fe, Mn, Sn, and Co, similar to the typical Huize-type (HZT) Pb-Zn deposit in the area. Therefore, it is suitable to explore the deposit using a large-scale “four step style” ore prospecting method for ore prospecting and prediction. Moreover, the results provide a reference for the study of Pb-Zn metallogenic systems and new ideas for the deep and peripheral prospecting of Pb-Zn deposits in this area. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

13 pages, 3249 KB  
Article
Generation Time and Accumulation of Lower Paleozoic Petroleum in Sichuan and Tarim Basins Determined by Re–Os Isotopic Dating
by Jie Wang, Liangbang Ma, Cheng Tao, Wenhui Liu and Qingwei Dong
Processes 2023, 11(5), 1472; https://doi.org/10.3390/pr11051472 - 12 May 2023
Cited by 1 | Viewed by 2149
Abstract
With the targets of petroleum exploration transferred to the deep and ancient strata, abundant oil and gas resources have been found in Lower Paleozoic and older strata in central and western China. Due to complex evolutionary processes including multiple episodes of hydrocarbon accumulation [...] Read more.
With the targets of petroleum exploration transferred to the deep and ancient strata, abundant oil and gas resources have been found in Lower Paleozoic and older strata in central and western China. Due to complex evolutionary processes including multiple episodes of hydrocarbon accumulation and ubiquitously accompanied by secondary alterations, significant uncertainties remain concerning the generation time and accumulation processes of these revealed petroleum sources. In this paper, relative pure Re and Os elements existing in the asphaltene fractions of Lower Cambrian solid bitumen collected from the Guangyuan area, western Sichuan Basin, SW China and Middle–Lower Ordovician heavy oils in the Aiding area of the Tahe oilfield in the Tarim Basin, NW China were successfully obtained by sample pretreatments, and Re–Os isotopic analysis was subsequently carried out for the dating of these. The Re–Os isotopic composition indicates a generation time of Guangyuan bitumen to between 572 Ma and 559 Ma, corresponding to the late Sinian period of the Neoproterozoic era. By the means of Re–Os isochron aging, initial 187Os/188Os ratios, and carbon isotopic compositions, the Lower Cambrian bitumen is supposed to originate from source rocks of the Doushantuo Formation in the Sinian strata and subsequently migrated into the reservoirs of the Dengying Formation. This previously reserved petroleum was transformed into its present bitumen state by the destruction of reservoirs caused by tectonic uplift. The Re–Os dating results of Middle–Lower Ordovician heavy oil of Tarim Basin suggest that it was formed between 450 Ma to 436 Ma, corresponding to the Late Ordovician–Early Silurian system, and the generated petroleum likely migrate into the Middle–Lower Ordovician karst reservoirs to form early oil reservoirs. With tectonic uplift, these oil reservoirs were degraded and reformed to the heavy-oil reservoirs of today. Full article
Show Figures

Figure 1

14 pages, 12264 KB  
Article
The Advances and Challenges of the Ediacaran Fractured Reservoir Development in the Central Sichuan Basin, China
by Xiao He, Guian Guo, Qingsong Tang, Guanghui Wu, Wei Xu, Bingshan Ma, Tianjun Huang and Weizhen Tian
Energies 2022, 15(21), 8137; https://doi.org/10.3390/en15218137 - 1 Nov 2022
Cited by 10 | Viewed by 2446
Abstract
The largest Precambrian gasfield in China has been found in the central Sichuan Basin. It has been assumed as an Ediacaran (Sinian) mound–shoal, microfacies-controlled, dolomite reservoir. However, the extremely low porosity–permeability and heterogeneous reservoir cannot establish high production by conventional development technology in [...] Read more.
The largest Precambrian gasfield in China has been found in the central Sichuan Basin. It has been assumed as an Ediacaran (Sinian) mound–shoal, microfacies-controlled, dolomite reservoir. However, the extremely low porosity–permeability and heterogeneous reservoir cannot establish high production by conventional development technology in the deep subsurface. For this contribution, we carried out development tests on the fractured reservoir by seismic reservoir description and horizontal well drilling. New advances have been made in recent years: (1) the prestack time and depth migration processing provides better seismic data for strike-slip fault identification; (2) seismic planar strike-slip structures (e.g., en échelon/oblique faults) and lithofacies offset together with sectional vertical fault reflection and flower structure are favorable for strike–slip fault identification; (3) in addition to coherence, maximum likelihood and steerable pyramid attributes can be used to identify small strike-slip faults and for fault mapping; (4) fusion attributes of seismic illumination and structural tensor were used to find fractured reservoir along fault damage zone; (5) horizontal wells were carried out across the strike-slip fault damage zone and penetrated fractured reservoir with high production. Subsequently, a large strike-slip fault system has been found throughout the central intracratonic basin, and the “sweet spot” of the fractured reservoir along the strike-slip fault damage zone is widely developed to be a new favorable domain for high-production development. There is still a big challenge in seismic and horizontal well technology for the economical exploitation of the deep fractured reservoirs. This practice provides new insight in the deep tight matrix reservoir development. Full article
Show Figures

Figure 1

12 pages, 12115 KB  
Article
Strike-Slip Fault Effects on Diversity of the Ediacaran Mound-Shoal Distribution in the Central Sichuan Intracratonic Basin, China
by Long Wen, Qi Ran, Weizhen Tian, Han Liang, Yuan Zhong, Yu Zou, Chen Su and Guanghui Wu
Energies 2022, 15(16), 5910; https://doi.org/10.3390/en15165910 - 15 Aug 2022
Cited by 19 | Viewed by 2372
Abstract
The largest Precambrian gasfield in China has been found from the Ediacaran (Sinian) carbonates in the central Sichuan Basin. The deep ancient reservoirs were generally attributed to the high-energy mound-shoal body in the carbonate platform. However, there is still little understanding on the [...] Read more.
The largest Precambrian gasfield in China has been found from the Ediacaran (Sinian) carbonates in the central Sichuan Basin. The deep ancient reservoirs were generally attributed to the high-energy mound-shoal body in the carbonate platform. However, there is still little understanding on the distribution of the mound-shoal bodies that hampers further gas exploitation from the deep subsurface. Based on the seismic data, a large strike-slip fault system was identified by new 3D seismic data in the central Sichuan Basin. Further, it was found that the strike-slip fault had some effects on the mound-shoal bodies of the Ediacaran Dengying Formation. First, the platform margin was divided by strike-slip faults into three distinct segments to show two weak-rimmed margins and one interbedded rimmed margin. Second, the platform margin could be offset or migrated with the strike-slip faults. Third, there is varied margin thickness across the strike-slip fault zone. In the inner platform, more carbonate mound-shoal bodies developed behind the weak-rimmed margin that was divided by the strike-slip fault zones. In addition, the mound-shoal bodies may be separated by faulted sag. Further, the mound-shoal bodies may have developed along the faulted higher position in one side of the strike-slip fault zone. These patterns of the mound-shoal bodies suggest that the strike-slip fault had an important role in the sedimentary microfacies’ diversity in the intracratonic carbonates. The low displacement of the strike-slip fault is chiefly responsible for a weaker controlling effect on the microfacies change in the intracratonic basin rather than other tectonic settings. Full article
(This article belongs to the Special Issue New Insights into Reservoir 3D Modeling and Simulation)
Show Figures

Figure 1

14 pages, 2551 KB  
Article
Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China
by Chenghua Xu, Dandan Yu and Zujiang Luo
Sustainability 2021, 13(8), 4449; https://doi.org/10.3390/su13084449 - 16 Apr 2021
Cited by 9 | Viewed by 3076
Abstract
This paper introduces a method to study the origin of geothermal water by analysis of hydrochemistry and isotopes. In addition, the genetic mechanism of geothermal water (GTW) is revealed. The study of the origin of geothermal water is useful for the sustainability of [...] Read more.
This paper introduces a method to study the origin of geothermal water by analysis of hydrochemistry and isotopes. In addition, the genetic mechanism of geothermal water (GTW) is revealed. The study of the origin of geothermal water is useful for the sustainability of geothermal use. As an example, Tangquan is abundant in GTW resources. Elucidating the recharge sources and formation mechanism of the GTW in this area is vitally important for its scientific development. In this study, the GTW in Tangquan was systematically investigated using hydrochemical and isotopic geochemical analysis methods. The results show the following. The GTW and shallow cold water in the study area differ significantly in their hydrochemical compositions. The geothermal reservoir has a temperature ranging from 63 to 75 °C. The GTW circulates at depths of 1.8–2.3 km. The GTW is recharged by the infiltration of meteoric water at elevations of 321–539 m and has a circulation period of approximately 2046–6474 years. The GTW becomes mixed with the shallow cold karst water at a ratio of approximately 4–26% (cold water) during the upwelling process. In terms of the cause of its formation, the geothermal system in the study area is, according to analysis, of the low-medium-temperature convective type. This geothermal system is predominantly recharged by precipitation that falls in the outcropping carbonate area within the Laoshan complex anticline and is heated by the terrestrial heat flow in the area. The geothermal reservoir is composed primarily of Upper Sinian dolomite formations, and its caprock is made up of Cambrian, Cretaceous, and Quaternary formations. Through deep circulation, the GTW migrates upward along channels formed from the convergence of northeast–east- and north–west-trending faults and is mixed with the shallow cold water, leading to geothermal anomalies in the area. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

10 pages, 45433 KB  
Short Note
Twinning Strains in Synfolding Calcite, Proterozoic Sinian System, China
by John P. Craddock, Junlai Liu and Yuanyuan Zheng
Geosciences 2018, 8(4), 131; https://doi.org/10.3390/geosciences8040131 - 11 Apr 2018
Cited by 2 | Viewed by 4130
Abstract
Synfolding calcite was precipitated between layers of Neoproterozoic sandy dolomite and striated parallel to the fold axis of an open anticline with a shallow plunge during folding. The fold had limb dips of 45° and plunged 20° to the south. The synfolding calcite [...] Read more.
Synfolding calcite was precipitated between layers of Neoproterozoic sandy dolomite and striated parallel to the fold axis of an open anticline with a shallow plunge during folding. The fold had limb dips of 45° and plunged 20° to the south. The synfolding calcite had sub-horizontal grooves that trended parallel to the fold. Limb-hinge-limb calcite samples (3 samples; n = 100 grains) preserved a layer-parallel shortening strain that trended at an acute (45°) angle to the trend of the fold axis and fold lineations. Extension axes were vertical and there was no strain overprint (low NEVs). Shortening strain magnitudes were −2.9% and the differential stress responsible for twinning was −38 MPa. The commonly observed structures were layer-parallel slip striations normal to the fold axis: sub-horizontal interlayer slip surfaces parallel to a fold axis (parallel to bedding strike) were unreported; as was a sub-horizontal shortening strain at an acute angle to the axis of a plunging fold. Full article
Show Figures

Graphical abstract

Back to TopTop