Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Sindh clay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3497 KiB  
Article
Adsorption, Modeling, Thermodynamic, and Kinetic Studies of Acteray Golden Removal from Polluted Water Using Sindh Clay and Quartz as Low-Cost Adsorbents
by Aqsa Fatima, Muhammad Asif Hanif, Umer Rashid, Muhammad Idrees Jilani, Fahad A. Alharthi and Jeehoon Han
Separations 2023, 10(10), 538; https://doi.org/10.3390/separations10100538 - 11 Oct 2023
Cited by 2 | Viewed by 2473
Abstract
Due to growing environmental awareness and demands, many efforts were implemented for the transformation of waste materials into highly efficient adsorption capacity materials. In this work, efforts were made to convert the Sindh clay and quartz into an efficient composite for dye removal [...] Read more.
Due to growing environmental awareness and demands, many efforts were implemented for the transformation of waste materials into highly efficient adsorption capacity materials. In this work, efforts were made to convert the Sindh clay and quartz into an efficient composite for dye removal from polluted water. The synthesized composites were characterized using FT-IR, BET, SEM, and XRD. The synthesized composite showed a crystalline structure with specific characteristics, including a specific surface area of 7.20 m2/g and a pore diameter of 3.27 nm. The formation of iron cyanide hydrate (2030 cm−1) and iron oxides (418 cm−1) were depicted through Fourier transform infrared spectroscopy analysis. The micrographs obtained show that the unmodified quartz sample has a flattened and elongated shape compared to the modified quartz sample, which has aggregated and coarse morphology. The effects of several factors, such as temperature, contact time, and initial dye concentration, were studied. Kinetic models were also applied to determine the probable route of the adsorption process. For adsorption equilibrium analysis, the Dubinin–Radushkevich, Langmuir, Freundlich, Temkin, and Harkin–Juraisotherm models were employed. The Freundlich isotherm model and pseudo-first-order model best described the adsorption of dyes onto the clay composites. R2 values were close to 1 or more than 0.9, showing which equation fits the experimental data. The produced composite demonstrated good reusability, maintaining over 90% of the adsorption capacity after five reaction cycles without the need for reactivation. Full article
(This article belongs to the Special Issue Removal of Emerging Pollutants and Environmental Analysis)
Show Figures

Figure 1

17 pages, 337 KiB  
Article
Assessment of Hydrobiological and Soil Characteristics of Non-Fertilized, Earthen Fish Ponds in Sindh (Pakistan), Supplied with Seawater from Tidal Creeks
by Asma Fatima, Ghulam Abbas and Robert Kasprzak
Water 2022, 14(13), 2115; https://doi.org/10.3390/w14132115 - 2 Jul 2022
Cited by 3 | Viewed by 3444
Abstract
In this study, the suitability of four earthen, seawater ponds located in the Thatta district of Sindh province (Pakistan) was evaluated for the purpose of semi-intensive mariculture, which remains to be a severely underdeveloped branch of the agricultural industry of this populous Asian [...] Read more.
In this study, the suitability of four earthen, seawater ponds located in the Thatta district of Sindh province (Pakistan) was evaluated for the purpose of semi-intensive mariculture, which remains to be a severely underdeveloped branch of the agricultural industry of this populous Asian country. Initial pond soil probes were promising, as they showed a high clay and silt content. Monthly water samples were obtained in the year 2019 (from January to December), which allowed for the monitoring of water parameters, as well as the identification and relative quantification of planktic populations. As a result, the monthly variations of basic water parameters were found within optimal ranges for planktic growth (water temperature, salinity, pH, transparency, and dissolved oxygen). Bacillariophyta was the largest phytoplanktic group, with the most dominant species being Sundstroemia setigera, followed by the cyanobacteria Oscillatoria limosa. Copepoda was the most numerous group of identified zooplankton, followed by tintinnids and foraminiferans. Total suspended solids (TSS) calculations indicated up to nine-fold month-to-month reductions of planktic biomass, observed in the form of diminishing Bacillariophyta (December) and Copepoda (June and December). In conclusion, the studied ponds appear to be suitable for semi-intensive mariculture activity due to the abundance of diverse planktic forms (mainly Copepoda—preferable natural food for commercially important fish species), which was achieved even without the use of fertilizers. However, significant drops of planktic biomass may still occur, which implies the need for regular water monitoring procedures, which would in turn allow fish producers to implement periodical adjustments to the administered feeding rates with artificial diets. Full article
(This article belongs to the Special Issue Integrated Multitrophic Aquaculture and Sites Suitability Assessment)
17 pages, 5938 KiB  
Article
Quadratic Mathematical Modeling of Sustainable Dry Beneficiation of Kaolin
by Muhammad Badar Hayat, Muhammad Danishwar, Amna Hamid, Mirza Muhammad Zaid and Muhammad Zaka Emad
Minerals 2021, 11(4), 429; https://doi.org/10.3390/min11040429 - 18 Apr 2021
Cited by 4 | Viewed by 3614
Abstract
Clay minerals are one of the most utilized minerals among non-metals. These are hydrous aluminum silicates with a layer (sheet-like) structure. Kaolin is a hydrous aluminosilicate mineral with a thin platelet structure. Kaolin is extensively used in paper, paint, and many other industries. [...] Read more.
Clay minerals are one of the most utilized minerals among non-metals. These are hydrous aluminum silicates with a layer (sheet-like) structure. Kaolin is a hydrous aluminosilicate mineral with a thin platelet structure. Kaolin is extensively used in paper, paint, and many other industries. Wet processing of kaolin will not be sustainable over the long term because global freshwater resources are becoming scarce. Hence, a process is necessary that does not consume water during the beneficiation of kaolin. This study developed a dry beneficiation process for low-grade kaolin of 59.6%, with 12% quartz and about 6% titaniferous impurities from Nagar Parkar, Sindh province, Pakistan. To develop a size difference between kaolinite and impurities, steel balls clad with rubber were used as the grinding media in a selective grinding unit. Screens of 60 and 400 mesh were employed to classify the feed of air classifier. Oversize +60 mesh was reground, 400 to 60 mesh fractions were sent to an air classifier, and −400 mesh was considered to be a product with the grade and recovery of 90.6% and 20.5%, respectively. Air classifier experiments were designed using central composite design. An experiment using a fan speed of 1200 revolutions per minute (rpm) and a shutter opening of 4.0 showed optimum results, with maximum kaolinite grade and recovery of 91.5% and 35.9%, respectively. The statistical models developed for grade and recovery predicted the optimum results at a fan speed of 1251 rpm and shutter opening of 3.3 with the maximum kaolinite grade and recovery of 91.1% and 24.7%, respectively. The differences between experimental and predicted grade and recovery were 0.1% and 2.4%, respectively. The characterization results showed the total upgrade of kaolin from 59.6% to 91.2%, with 27.1% recovery during the process. The designed methodology has the potential to improve the yield of the product by focusing on its recovery. Furthermore, the designed process can be improved by using different sized balls in the selective grinding unit. This beneficiation process can utilize more than one air classifier in series to achieve the targeted results. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop