Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Siberian pine mortality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5631 KiB  
Article
Siberian Pine and Larch Response to Warming-Drying Climate in the Southern Boundary of Their Range
by Ilya A. Petrov, Viacheslav I. Kharuk, Alexey S. Golyukov, Sergei T. Im, Sergei O. Ondar and Alexander S. Shushpanov
Forests 2024, 15(6), 1054; https://doi.org/10.3390/f15061054 - 18 Jun 2024
Cited by 1 | Viewed by 1562
Abstract
Trees’ growth and areal responses to changing climate are primarily expected within the edges of the species range. Here, we compared the responses of Siberian pine (Pinus sibirica Du Tour), a moisture-sensitive species, and drought-resistant larch (Larix sibirica Ledeb.) at the [...] Read more.
Trees’ growth and areal responses to changing climate are primarily expected within the edges of the species range. Here, we compared the responses of Siberian pine (Pinus sibirica Du Tour), a moisture-sensitive species, and drought-resistant larch (Larix sibirica Ledeb.) at the southern part of their ranges in the Siberian Mountains (the Tannu-Ola Ridge). We study the species’ growth and proportion in the forests from forest-steppe to treeline ecotone along the elevation gradient. These studies are based on radial growth index (GI) analysis and GI dependence on the climate variables. We used satellite time series to detect the land cover changes (areas of larch and Siberian pine, as well as shrubs and birch). We compared trees’ GI before and after warming “restart” in the late 1990s. Generally, GI dependence on the air temperature was negative at elevations below c. 1600 m a.s.l., whereas GI dependence on the moisture variables (precipitation, vapor pressure deficit, and soil moisture) was positive for both species. Above 1600 m, increasing air temperatures stimulated species growth, whereas the influence of moisture variables was negative (for larch) or neutral (for Siberian pine). After the warming restart, the GI of both conifers increased in moisture-sufficient high elevations and treeline ecotone, whereas within low elevations (<1300 m), the GI was stagnant or suppressed. Both species’, especially Siberian pine, negative growth dependence on air temperature and positive dependence on the moisture variables strongly increased since the warming restart. We found a risen growth dependence of both species on the soil-stored water during the previous year (September–October), which smoothed moisture stress at the beginning of the growing season. Yet both species’ growth also suffered as a result of early spring warms. We found that larch is migrating in both uphill and downhill directions, while Siberian pine is migrating uphill only. Forests loss occurred at low elevations (<1300 m), whereas forest and shrub gain occurred at high (>2000 m) ones. The upper boundary of the forests and shrubs is migrating uphill at rates of about 0.8 and 0.3 m/y, respectively. We observed a decrease in Siberian pine proportion in the forests, whereas areas of larch and birch strongly increased (by 150% and 100%, respectively), which indicates the retreat of Siberian pine from its southern habitat. We suggested afforestation of the areas of Siberian pine mortality by the drought-tolerant larch species. Full article
Show Figures

Figure 1

13 pages, 3493 KiB  
Article
Mountain Taiga in a Warming Climate: Contrast of Siberian Pine Growth along an Elevation Gradient
by Viacheslav I. Kharuk, Il’ya A. Petrov, Alexey S. Golyukov, Sergei T. Im and Alexander S. Shushpanov
Forests 2024, 15(1), 50; https://doi.org/10.3390/f15010050 - 26 Dec 2023
Cited by 4 | Viewed by 1969
Abstract
The growth and survival of trees in the Siberian Mountains are experiencing a strong influence on climate warming. We analyzed Siberian pine (SP, Pinus sibirica) growth within the treeline ecotone in high (>1000 m) and low (<900 m) lands. We used ground [...] Read more.
The growth and survival of trees in the Siberian Mountains are experiencing a strong influence on climate warming. We analyzed Siberian pine (SP, Pinus sibirica) growth within the treeline ecotone in high (>1000 m) and low (<900 m) lands. We used ground surveys, dendrochronology, and climate variable data analysis. We found a contrasting response of SP growth with increasing air temperature and moisture parameters along the elevation gradient. In the treeline ecotone and highlands, the tree’s growth has been increasing since warming onset in the 1970s, whereas in the lowlands, the initial growth increase switched to a growth drop since the beginning of the 2000s, with a consequent partial mortality of the Siberian pine forest caused by warming-driven water stress in combination with bark borers’ attacks. This mortality suggests the retraction of the Siberian pine range in the lowlands of the Siberian Mountains. The projected drought increase will likely lead to the substitution of Siberian pine with drought-tolerant species. The tree’s growth index (GI) dependence on air temperature and moisture variables includes two phases. In the first phase (since the warming onset in the 1970s), the trees’ GI was positively correlated with elevated temperature, whereas correlations with precipitation and soil moisture were negative. During the second phase (since the increase in warming in the 2000s), negative correlations between the GI and moisture variables switched to positive ones. The correlations of the GI with air temperature switched from positive to mostly insignificant. The wind’s influence on the trees’ growth changed from negative to insignificant since the 2000s within all elevation belts. Afforestation within the areas of Siberian pine mortality should not be based on the planting of Siberian pine but on drought-tolerant species such as larch (Larix sibirica) and Scots pine (Pinus sylvestris). Full article
(This article belongs to the Special Issue Spatial Distribution and Growth Dynamics of Tree Species)
Show Figures

Figure 1

12 pages, 2323 KiB  
Article
Classification of Fire Damage to Boreal Forests of Siberia in 2021 Based on the dNBR Index
by Evgenii Ponomarev, Andrey Zabrodin and Tatiana Ponomareva
Fire 2022, 5(1), 19; https://doi.org/10.3390/fire5010019 - 29 Jan 2022
Cited by 26 | Viewed by 6906
Abstract
Wildfire in Siberia is extensive, affecting up to 15 Mha annually. The proportion of the vegetation affected by severe fires is yet unknown, and it is a problem that requires a solution because post-fire mortality of tree stands in Siberian taiga has a [...] Read more.
Wildfire in Siberia is extensive, affecting up to 15 Mha annually. The proportion of the vegetation affected by severe fires is yet unknown, and it is a problem that requires a solution because post-fire mortality of tree stands in Siberian taiga has a strong effect on the global budget of carbon. The impact of fire in our area of interest in eastern Siberia was analyzed using the normalized burn ratio (NBR) and its pre- versus post-fire difference (dNBR) applied to Landsat-8 (OLI) collected in 2020–2021. In this paper, we present the classification of fire impact in relation to dominant tree stands and vegetation types in boreal forests of eastern Siberia. The dNBR of post-fire plots ranged widely (0.30–0.60) in homogeneous larch (Larix sibirica, L. gmelinii) forests, pine (Pinus sylvestris) forests, dark coniferous stands (Pinus sibirica, Abies sibirica, Picea obovata), sparse larch stands, and Siberian dwarf pine (Pinus pumila) stands. We quantified the proportions of low, moderate, and high fire severity (37%, 39%, and 24% of the total area burned, respectively) in dense tree stands, which were varied to 30%, 57%, and 13%, respectively, for sparse stands and tundra vegetation dominated in the north of eastern Siberia. The proportion of severe fires varied according to the transition from dominant larch stands (33.2% of the area burned) to pine (12.6%) and dark coniferous (up to 26.4%). The current proportion of stand-replacement fires in eastern Siberia is 12–33%, depending on vegetation type and tree density, which is about 2500 thousand hectares in 2021 in the region. According to our findings, the “healthy/unburned vegetation” class was quantified as well at least 700 thousand hectares in 2021. Full article
Show Figures

Figure 1

Back to TopTop