Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Satanoperca jurupari

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3557 KiB  
Article
Myxozoan Ceratomyxids Infecting the Gallbladder of Amazonian Ornamental Cichlid Fish: Description of Ellipsomyxa santarenensis n. sp. and Report of Ceratomyxa amazonensis in a New Host
by Rayline T. A. Figueredo, Maria I. Müller, Paul F. Long and Edson A. Adriano
Diversity 2023, 15(7), 830; https://doi.org/10.3390/d15070830 - 1 Jul 2023
Cited by 6 | Viewed by 2036
Abstract
Although most Myxozoa species of the genera Ceratomyxa and Ellipsomyxa have been described in marine hosts worldwide, an increasing diversity has been reported infecting South American freshwater fish, mainly in Amazonian waters. The present study deals with two species of myxozoan ceratomyxids parasitizing [...] Read more.
Although most Myxozoa species of the genera Ceratomyxa and Ellipsomyxa have been described in marine hosts worldwide, an increasing diversity has been reported infecting South American freshwater fish, mainly in Amazonian waters. The present study deals with two species of myxozoan ceratomyxids parasitizing the gallbladder of Amazonian ornamental cichlids fish: Ceratomyxa amazonensis is identified from a new host—Geophagus altifrons; while Ellipsomyxa santarenensis n. sp. is described infecting Satanoperca jurupari. Morphological (light microscopy and transmission electron microscopy), molecular (small ribosomal subunit DNA—SSU-rDNA sequencing) and phylogenetic analyses were used to characterize both species. Ceratomyxa amazonensis showed a prevalence of 64.2%, with plasmodia showing a vermiform shape and motility. For E. santarenensis n. sp., the prevalence was 33.3%. Ultrastructural analysis revealed that the vermiform C. amazonensis plasmodia were composed of an outer cytoplasmic region and a large vacuole occupying the inner area. In E. santarenensis n. sp., cytoplasmic expansions were observed in pseudoplasmodia originating pseudopodia. SSU rDNA sequencing-based genetic distance analysis revealed a very small difference between C. amazonensis, parasite of G. altifrons, and C. amazonensis, parasite of S. discus—host of the original description, thus showing that they are the same species occurring in a new host. For Ellipsomyxa santarenensis n. sp., molecular data revealed a difference of 1.6% for Ellipsomyxa amazonensis and Ellipsomyxa paraensis. The phylogenetic analysis revealed the grouping of E. santarenensis n. sp. together with the other freshwater Ellipsomyxa species of the Amazonian region, and associated with the morphological data, it was possible to identify it as a new taxon within the genus Ellipsomyxa. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Systematics of Fish Parasites)
Show Figures

Figure 1

Back to TopTop