Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Sanjiang Metallogenic Belt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 17533 KB  
Article
Discussion on the Genesis of Vein-Type Copper Deposits in the Northern Lanping Basin, Western Yunnan
by Zhangyu Chen, Xiaohu Wang, Yucai Song and Teng Liu
Minerals 2026, 16(1), 33; https://doi.org/10.3390/min16010033 - 27 Dec 2025
Viewed by 342
Abstract
The Sanjiang Tethys orogenic belt in Southwest China is a globally important polymetallic metallogenic domain, hosting numerous world-class Cu-Pb-Zn deposits. Among these, the Lanping Basin is a typical ore concentration area, characterized by complex tectonic evolution and extensive hydrothermal mineralization. Although numerous vein-type [...] Read more.
The Sanjiang Tethys orogenic belt in Southwest China is a globally important polymetallic metallogenic domain, hosting numerous world-class Cu-Pb-Zn deposits. Among these, the Lanping Basin is a typical ore concentration area, characterized by complex tectonic evolution and extensive hydrothermal mineralization. Although numerous vein-type Cu deposits occur in the northern and western parts of the basin, research in the north region remains less comprehensive. This study investigates three typical vein-type Cu deposits (Hetaoqing, Hemeigou, and Songpingzi) in the northern Lanping Basin using rare-earth element (REE) analysis, S-Pb-Sr isotope determinations, and tectonic stress inversion. Results show that 206Pb/204Pb ratios range from 18.374 to 18.691, and δ34SV-CDT values vary from –11.7‰ to +9.4‰, indicating mixed sources of ore-forming materials dominated by deep magmatic sources, particularly related to alkaline rocks around the basin. Sulfur sources are closely associated with thermochemical sulfate reduction (TSR). Additionally, 87Sr/86Sr ratios range from 0.710949 to 0.711864, ΣREE values range from 85.87 × 10–6 to 111.86 × 10–6, Ce/Ce* ratios range from 0.86 to 0.92, and Eu/Eu* ratios range from 1.06 to 2.99. Fluid inclusion microthermometry yields temperatures of 217–252 °C (average 238 °C), indicating that ore-forming fluids experienced water–rock interaction during migration and ultimately exhibited mixed properties. Tectonic stress field inversion reveals that the structures formed by NE–SW compressive stress field before mineralization stage provided ore-hosting spaces and fluid migration pathways, while a late Cenozoic abrupt stress field change promoted the precipitation of ore-forming materials. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 11071 KB  
Article
Element Migration of Mineralization-Alteration Zones and Its Geological Implication in the Beiya Porphyry–Skarn Deposit, Northwestern Yunnan, China
by Fei Liu, Runsheng Han, Yuxinyue Guo, Mingzhi Wang and Wei Tan
Appl. Sci. 2024, 14(21), 9653; https://doi.org/10.3390/app14219653 - 22 Oct 2024
Cited by 2 | Viewed by 3123
Abstract
Porphyry and the associated skarn-type deposit is one of the most important types of ore deposits worldwide, which usually exhibit significant zoning of mineralization-alteration, but the research on element migration in these mineralization-alteration zones is relatively weak. The Beiya porphyry–skarn gold-polymetallic deposit is [...] Read more.
Porphyry and the associated skarn-type deposit is one of the most important types of ore deposits worldwide, which usually exhibit significant zoning of mineralization-alteration, but the research on element migration in these mineralization-alteration zones is relatively weak. The Beiya porphyry–skarn gold-polymetallic deposit is a super-large Cenozoic deposit located in the Sanjiang metallogenic belt, northwestern Yunnan, China. In this paper, through a detailed analysis of mineralization and alteration zoning and its element migration regularity, the findings are as follows: (1) Three types of hydrothermal alteration—porphyry alteration, contact alteration, and wall-rock alteration—are developed, and porphyry alteration includes potassic, phyllic, propylitic, and argillic alteration; (2) five types of mineralization—porphyry-type Cu–Au–(Mo), skarn-type Au–Fe–(Cu), hydrothermal vein-type Au–Fe, distal hydrothermal-type Pb-polymetallic, and oxidizing-leaching enriched-type Au—occur in a diversity of forms, which are dominantly controlled by structures and lithologies; (3) concentric-banded mineralization-alteration zones are exhibited centrally from the alkaline porphyry outward or upward, namely [porphyry alteration] potassic → phyllic → propylitic → argillic → [contact alteration] skarnitization–marbleization → [wall-rock alteration] marbleization–silicification–calcitization; (4) porphyry-type mineralization predominantly forms within potassic and phyllic zones, while skarn-type mineralization occurs in contact alteration zones, and proximal and distal hydrothermal (vein)-type mineralization are commonly distributed in marbleization–silicification–calcitization alteration zones; and (5) element migration analysis demonstrates a significantly lateral and vertical zoning in the metallogenic element association of Cu–Mo → Cu–Au → Au–Fe–Cu → Au–Fe → Pb–Zn–Au–Ag–Fe from alkaline porphyry outward to the wall-rock. The mineralization-alteration zoning model indicates the Beiya deposit has similar mineralization and alteration zone characteristics to the typical porphyry copper system; and element migration within mineralization-alteration zones provides new scientific information for understanding the metallogenic regularity and prospecting at Beiya, as well as the similar types of deposits in the Sanjiang metallogenic belt and elsewhere in the world. Full article
Show Figures

Figure 1

21 pages, 6939 KB  
Article
Geochemical Characteristics and Zircon U-Pb Geochronology of Diabase in the Jinchanghe Mining Area, Western Yunnan, SW China: Implications for Tectonic and Magmatic Evolution of the Baoshan Block
by Xuelong Liu, Wenchang Li, Yunman Zhou, Chengfeng Zhao, Jun Zhu, Fanglan Li, Jiyuan Wang, Qingrui Li, Zhiyi Wei, Xue Liu, Hai Wang and Jun Fu
Minerals 2022, 12(2), 176; https://doi.org/10.3390/min12020176 - 29 Jan 2022
Cited by 4 | Viewed by 3648
Abstract
The Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit is located in the northern Baoshan block in the Sanjiang metallogenic belt, southwestern China, and is one of the major large-scale Pb-Zn polymetallic deposits. This region is characterized by numerous diabase intrusions; however, research work is limited. This [...] Read more.
The Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit is located in the northern Baoshan block in the Sanjiang metallogenic belt, southwestern China, and is one of the major large-scale Pb-Zn polymetallic deposits. This region is characterized by numerous diabase intrusions; however, research work is limited. This study elucidated systematic geochemistry and chronology of the diabase closely associated with orebodies in Jinchanghe to provide constraints for magma evolution. The results indicated that the Jinchanghe diabase was enriched in CaO, MgO, and Al2O3 and depleted in TiO2 and P2O5. Large ion lithophile elements were depleted, while for high field strength elements, the ratio of LREEs but depleted in HREEs. The zircon U-Pb dating results suggested that the diabase age could be divided into two stages, indicating the occurrence of two-stage tectonic-magmatic events in the Late Triassic and Early Cretaceous. The results also suggested that the metallogenic age of the Jinchanghe deposit is the Early Cretaceous. Moreover, the age was closely related to the collision after the closure of the mid-Tethys Ocean in the Early Cretaceous. Therefore, the results of this study provide new evidence for the tectonic-magmatic evolution and mineralization of the Baoshan block. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

29 pages, 14148 KB  
Article
Ore Genesis of the Chuduoqu Pb-Zn-Cu Deposit in the Tuotuohe Area, Central Tibet: Evidence from Fluid Inclusions and C–H–O–S–Pb Isotopes Systematics
by Yong-Gang Sun, Bi-Le Li, Feng-Yue Sun, Ye Qian, Run-Tao Yu, Tuo-Fei Zhao and Jun-Lin Dong
Minerals 2019, 9(5), 285; https://doi.org/10.3390/min9050285 - 10 May 2019
Cited by 7 | Viewed by 5022
Abstract
The Chuduoqu Pb-Zn-Cu deposit is located in the Tuotuohe area in the northern part of the Sanjiang Metallogenic Belt, central Tibet. The Pb-Zn-Cu ore bodies in this deposit are hosted mainly by Middle Jurassic Xiali Formation limestone and sandstone, and are structurally controlled [...] Read more.
The Chuduoqu Pb-Zn-Cu deposit is located in the Tuotuohe area in the northern part of the Sanjiang Metallogenic Belt, central Tibet. The Pb-Zn-Cu ore bodies in this deposit are hosted mainly by Middle Jurassic Xiali Formation limestone and sandstone, and are structurally controlled by a series of NWW trending faults. In this paper, we present the results of fluid inclusions and isotope (C, H, O, S, and Pb) investigations of the Chuduoqu deposit. Four stages of hydrothermal ore mineralization are identified: quartz–specularite (stage I), quartz–barite–chalcopyrite (stage II), quartz–polymetallic sulfide (stage III), and quartz–carbonate (stage IV). Two types of fluid inclusions are identified in the Chuduoqu Pb-Zn-Cu deposit: liquid-rich and vapor-rich. The homogenization temperatures of fluid inclusions for stages I–IV are 318–370 °C, 250–308 °C, 230–294 °C, and 144–233 °C, respectively. Fluid salinities range from 2.07 wt. % to 11.81 wt. % NaCl equivalent. The microthermometric data indicate that the fluid mixing and cooling are two important mechanisms for ore precipitation. The H and O isotopic compositions of quartz indicate a primarily magmatic origin for the ore-forming fluids, with the proportion of meteoric water increasing over time. The C and O isotopic compositions of carbonate samples indicate that a large amount of magmatic water was still involved in the final stage of mineralization. The S and Pb isotopic compositions of sulfides, demonstrate that the ore minerals have a magmatic source. On a regional basis, the most likely source of the metallogenic material was regional potassium-enriched magmatic hydrothermal fluid. Specifically for the Chuduoqu Pb-Zn-Cu deposit, the magmatic activity of a syenite porphyry was the likely heat source, and this porphyry also provided the main metallogenic material for the deposit. Mineralization took place between 40 and 24 Ma. The Chuduoqu deposit is a mesothermal hydrothermal vein deposit and was formed in an extensional environment related to the late stage of intracontinental orogenesis resulting from India–Asia collision. The determination of the deposit type and genesis of Chuduoqu is important because it will inform and guide further exploration for hydrothermal-type Pb and Zn deposits in the Tuotuohe area and in the wider Sanjiang Metallogenic Belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

29 pages, 69075 KB  
Article
Ore Genesis and Geodynamic Setting of Laochang Ag-Pb-Zn-Cu Deposit, Southern Sanjiang Tethys Metallogenic Belt, China: Constraints from Whole Rock Geochemistry, Trace Elements in Sphalerite, Zircon U-Pb Dating and Pb Isotopes
by Chen Wei, Lin Ye, Zhilong Huang, Wei Gao, Yusi Hu, Zhenli Li and Jiawei Zhang
Minerals 2018, 8(11), 516; https://doi.org/10.3390/min8110516 - 8 Nov 2018
Cited by 28 | Viewed by 7815
Abstract
The Laochang Ag-Pb-Zn-Cu deposit, located in the southern margin of the Sanjiang Tethys Metallogenic Belt (STMB), is the typical Ag-Pb-Zn-Cu deposit in this region. Its orebodies are hosted in the Carboniferous Yiliu Formation volcanic-sedimentary cycle and occur as stratiform, stratoid and lenticular. Whether [...] Read more.
The Laochang Ag-Pb-Zn-Cu deposit, located in the southern margin of the Sanjiang Tethys Metallogenic Belt (STMB), is the typical Ag-Pb-Zn-Cu deposit in this region. Its orebodies are hosted in the Carboniferous Yiliu Formation volcanic-sedimentary cycle and occur as stratiform, stratoid and lenticular. Whether or not the stratabound ore belong to the volcanogenic massive sulfide (VMS) deposit remains unclear and controversial. In this paper, the whole rock geochemistry, trace elements in sphalerite, U-Pb zircon chronology and Pb isotopes were investigated, aiming to provide significant insights into the genesis and geodynamic setting of the Laochang deposit. Lead isotope ratios of pyrite and sphalerite from the stratabound ore are 18.341 to 18.915 for 206Pb/204Pb; 15.376 to 15.770 for 207Pb/204Pb; and 38.159 to 39.200 for 208Pb/204Pb—which display a steep linear trend on Pb-Pb diagrams. This indicates a binary mixing of lead components derived from leaching between the host volcanic rock and mantle reservoir. Sphalerite from stratabound ores is relatively enriched in Fe, Mn, In, Sn, and Ga—similar to typical VMS deposits. Moreover, the Carboniferous volcanic rock hosting the stratabound Ag-Pb-Zn-Cu ores has a zircon U-Pb age of 312 ± 4 Ma; together with previous geochronological and geological evidences, thus, we consider that the stratabound mineralization occur in the Late Paleozoic (~323–308 Ma). Collectively, these geologic, geochemical, and isotopic data confirm that the stratabound ores should be assigned to Carboniferous VMS mineralization. In addition, volcanic rocks hosting the stratabound ore exhibit elevated high field strength elements (HFSEs, Nb, Ta, Zr and Hf) abundance, slight enrichment of light rare earth element (LREE), and depletion of Ba and Sr with obvious Nb-Ta anomalies. Such characteristics suggest that their magma is similar to typical oceanic island basalt. In addition, the oceanic island basalt (OIB)-like volcanic rocks were formed at Late Paleozoic, which could be approximately synchronous with the VMS mineralization at Laochang. Thus, it is suggested that the Laochang VMS mineralization was generated in the oceanic island setting prior to the initial subduction of the Changning-Menglian Paleo-Tethys Ocean. Full article
(This article belongs to the Special Issue Massive Sulfide Deposits all around the World)
Show Figures

Figure 1

Back to TopTop