Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Salvia prattii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3123 KiB  
Article
Efficient Separation of Four Antibacterial Diterpenes from the Roots of Salvia Prattii Using Non-Aqueous Hydrophilic Solid-Phase Extraction Followed by Preparative High-Performance Liquid Chromatography
by Jun Dang, Yulei Cui, Jinjin Pei, Huilan Yue, Zenggen Liu, Weidong Wang, Lijin Jiao, Lijuan Mei, Qilan Wang, Yanduo Tao and Yun Shao
Molecules 2018, 23(3), 623; https://doi.org/10.3390/molecules23030623 - 9 Mar 2018
Cited by 16 | Viewed by 4509
Abstract
An efficient preparative procedure for the separation of four antibacterial diterpenes from a Salvia prattii crude diterpenes-rich sample was developed. Firstly, the XION hydrophilic stationary phase was chosen to separate the antibacterial crude diterpenes-rich sample (18.0 g) into three fractions with a recovery [...] Read more.
An efficient preparative procedure for the separation of four antibacterial diterpenes from a Salvia prattii crude diterpenes-rich sample was developed. Firstly, the XION hydrophilic stationary phase was chosen to separate the antibacterial crude diterpenes-rich sample (18.0 g) into three fractions with a recovery of 46.1%. Then, the antibacterial fractions I (200 mg), II (200 mg), and III (150 g) were separated by the Megress C18 preparative column, and compounds tanshinone IIA (80.0 mg), salvinolone (62.0 mg), cryptotanshinone (70.0 mg), and ferruginol (68.0 mg) were produced with purities greater than 98%. The procedure achieved large-scale preparation of the four diterpenes with high purity, and it could act as a reference for the efficient preparation of active diterpenes from other plant extracts. Full article
(This article belongs to the Special Issue Solid Phase Extraction: State of the Art and Future Perspectives)
Show Figures

Figure 1

Back to TopTop