Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = SSFPD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2634 KB  
Article
Vehicle Logo Recognition Based on Enhanced Matching for Small Objects, Constrained Region and SSFPD Network
by Ruikang Liu, Qing Han, Weidong Min, Linghua Zhou and Jianqiang Xu
Sensors 2019, 19(20), 4528; https://doi.org/10.3390/s19204528 - 18 Oct 2019
Cited by 16 | Viewed by 7158
Abstract
Vehicle Logo Recognition (VLR) is an important part of vehicle behavior analysis and can provide supplementary information for vehicle identification, which is an essential research topic in robotic systems. However, the inaccurate extraction of vehicle logo candidate regions will affect the accuracy of [...] Read more.
Vehicle Logo Recognition (VLR) is an important part of vehicle behavior analysis and can provide supplementary information for vehicle identification, which is an essential research topic in robotic systems. However, the inaccurate extraction of vehicle logo candidate regions will affect the accuracy of logo recognition. Additionally, the existing methods have low recognition rate for most small vehicle logos and poor performance under complicated environments. A VLR method based on enhanced matching, constrained region extraction and SSFPD network is proposed in this paper to solve the aforementioned problems. A constrained region extraction method based on segmentation of the car head and car tail is proposed to accurately extract the candidate region of logo. An enhanced matching method is proposed to improve the detection performance of small objects, which augment each of training images by copy-pasting small objects many times in the unconstrained region. A single deep neural network based on a reduced ResNeXt model and Feature Pyramid Networks is proposed in this paper, which is named as Single Shot Feature Pyramid Detector (SSFPD). The SSFPD uses the reduced ResNeXt to improve classification performance of the network and retain more detailed information for small-sized vehicle logo detection. Additionally, it uses the Feature Pyramid Networks module to bring in more semantic context information to build several high-level semantic feature maps, which effectively improves recognition performance. Extensive evaluations have been made on self-collected and public vehicle logo datasets. The proposed method achieved 93.79% accuracy on the Common Vehicle Logos Dataset and 99.52% accuracy on another public dataset, respectively, outperforming the existing methods. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop