Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = SM70MT electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 24038 KiB  
Article
Advanced Porosity Control of CP780 Galvanized Steel During Gas Metal Arc Welding with Pulsed Arc
by Carlos Adrián García Ochoa, Jorge Alejandro Verduzco Martínez, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, José Jaime Taha-Tijerina, Ariosto Medina Flores and Maleni García Gómez
Metals 2025, 15(5), 513; https://doi.org/10.3390/met15050513 - 1 May 2025
Viewed by 790
Abstract
This study investigated the control of porosity during gas metal arc welding with pulsed arc (GMAW-P) of complex-phase 780 (CP780) galvanized steel. Due to the Zn coating on this type of steel, porosity forms during welding as a result of Zn vaporization. The [...] Read more.
This study investigated the control of porosity during gas metal arc welding with pulsed arc (GMAW-P) of complex-phase 780 (CP780) galvanized steel. Due to the Zn coating on this type of steel, porosity forms during welding as a result of Zn vaporization. The objective was to optimize the welding parameters to minimize porosity with a design of experiments using an L9 orthogonal array to analyze the effects of peak current (Ip), pulse time (tp), and pulse frequency (f) in high-speed welding conditions. The results showed that porosity was significantly reduced with a peak current of 313 A, a frequency of 10 Hz, and a pulse time of 10 ms, achieving ~0% porosity in the validation welding trials. A microstructural analysis identified allotriomorphic ferrite, Widmanstätten ferrite, acicular ferrite, bainite, and martensite in the heat-affected zone (HAZ). A predictive model to anticipate the percentage of porosity with an R2 of 99.97% was developed, and an ANOVA determined the peak current as the most critical factor in porosity formation. Full article
Show Figures

Figure 1

Back to TopTop