Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = SIW MIMO antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5622 KB  
Article
Phase-Controlled Bidirectional Circularly Polarized Dual 4-Port SIW MIMO Antenna with Enhanced Isolation for Sub-6 GHz Vehicular Communications
by Kamepalli Dharani, M. Sujatha, Samineni Peddakrishna and Jayendra Kumar
Electronics 2026, 15(3), 539; https://doi.org/10.3390/electronics15030539 - 27 Jan 2026
Abstract
This paper presents a dual four-port circularly polarized (CP) MIMO antenna based on substrate integrated waveguide (SIW) technology for sub-6 GHz applications. The design consists of two identical four-port SIW-based CP-MIMO antennas arranged in a mirror-symmetric configuration with an air gap of 15 [...] Read more.
This paper presents a dual four-port circularly polarized (CP) MIMO antenna based on substrate integrated waveguide (SIW) technology for sub-6 GHz applications. The design consists of two identical four-port SIW-based CP-MIMO antennas arranged in a mirror-symmetric configuration with an air gap of 15 mm. Each antenna employs four symmetrically arranged cross-shaped SIW patches excited by coaxial probes. Bidirectional radiation is achieved by applying a 180° phase difference between corresponding ports of the mirror symmetric configuration, referred to as the Backward-Radiating Unit (BRU) and the Forward-Radiating Unit (FRU). The bidirectional radiation mechanism is supported by array-factor-based theoretical modelling, which explains the constructive and destructive interference under phase-controlled excitation. To ensure high isolation and stable polarization performance, the antenna design incorporates defected ground structures, inter-element decoupling strips, and vertical metallic vias. Simulations indicate an operating band from 5.1 to 5.4 GHz. Measurements show a −10 dB bandwidth from 5.25 to 5.55 GHz, with the frequency shift attributed to fabrication tolerances and measurement uncertainties. The antenna achieves inter-port isolation better than −15 dB. A 3 dB axial-ratio bandwidth is maintained across the operating band. Measured axial-ratio values remain below 3 dB from 5.25 to 5.55 GHz, while simulations predict a corresponding range from 5.1 to 5.4 GHz. The proposed configuration achieves a peak gain exceeding 4 dBi and maintains an envelope correlation coefficient below 0.05. These results confirm its suitability for CP-MIMO systems with controlled spatial coverage. With a physical size of 0.733λ0 × 0.733λ0 per array, the proposed antenna is well-suited for vehicular and space-constrained wireless systems requiring bidirectional CP-MIMO coverage. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 8958 KB  
Article
A Quad-Band Shared-Aperture Antenna Based on Dual-Mode Composite Quarter-Mode SIW Cavity for 5G and 6G with MIMO Capability
by Amjaad T. Altakhaineh, Saqer S. Alja’afreh, Aser M. Almatarneh, Eqab Almajali, Luae Al-Tarawneh and Jawad Yousaf
Electronics 2023, 12(11), 2480; https://doi.org/10.3390/electronics12112480 - 31 May 2023
Cited by 21 | Viewed by 3411
Abstract
This study introduces a new design for an ultra-compact shared-aperture antenna utilizing a quarter-mode substrate integrated waveguide (QMSIW) cavity. The proposed antenna operates as a 4 × 4 multi-input multi-output (MIMO) system in three 5G/6G millimeter-wave (MMw) bands, while functioning as a single [...] Read more.
This study introduces a new design for an ultra-compact shared-aperture antenna utilizing a quarter-mode substrate integrated waveguide (QMSIW) cavity. The proposed antenna operates as a 4 × 4 multi-input multi-output (MIMO) system in three 5G/6G millimeter-wave (MMw) bands, while functioning as a single element antenna for a 5.5 GHz wireless fidelity Microwave (Mw) band. The antenna comprises four QMSIW cavity resonators; each QMSIW is loaded with dual slots to produce tri-band MMw operation at 28 GHz, 38 GHz, and 0.13 THz. The four cavities are arranged to reuse the entire aperture by creating a conventional open-loop antenna that operates at a frequency of 5.5 GHz. Simulation, measurement, and co-simulation results show that the proposed antenna has a quad-band operation and exhibits favorable characteristics. The measured scattering parameters validate the simulated ones over the four bands under consideration. The lowest values of the measured total radiation efficiencies are 80%, 73%, 62%, and 72% (co-simulation) within the four covered bands, respectively. The antenna peak gains are 1.8 to 1.85 dBi, 4.0 to 4.5 dBi, 4.3 to 4.5 dBi, and 6.5 to 6.6 dBi within the covered bands. Furthermore, the design satisfies MIMO and diversity conditions (envelope correlation coefficient and branch power ratio) over frequency bands of operation. All excellent results are achieved from an ultra-compact size in terms of footprint area (0.018λ02), where λ0 represents the free space wavelength at 5.5 GHz. The antenna boasts an excellent reuse aperture utilization efficiency (RAU) of 92% and a large ratio frequency of 23, making it an ideal candidate for compact devices. With its superior performance, the proposed design is well-suited for a range ofs wireless communication systems, including mobile devices and the Internet of Things. Full article
(This article belongs to the Special Issue Advanced Antenna Design for 5G and beyond Communications)
Show Figures

Figure 1

Back to TopTop