Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = SEACLID/CORDEX-SEA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 14381 KiB  
Article
The Impact of Climate Change on Hydro-Meteorological Droughts in the Chao Phraya River Basin, Thailand
by Bounhome Kimmany, Supattra Visessri, Ponleu Pech and Chaiwat Ekkawatpanit
Water 2024, 16(7), 1023; https://doi.org/10.3390/w16071023 - 1 Apr 2024
Cited by 4 | Viewed by 2833
Abstract
This study evaluated the impacts of climate change on hydro-meteorological droughts in the Chao Phraya River Basin (CPRB), Thailand under two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5). We used three Reginal Climate Models (RCMs) of the Southeast Asia Regional Climate Downscaling/Coordinated [...] Read more.
This study evaluated the impacts of climate change on hydro-meteorological droughts in the Chao Phraya River Basin (CPRB), Thailand under two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5). We used three Reginal Climate Models (RCMs) of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment—Southeast Asia (SEACLID/CORDEX-SEA), which are bias corrected. The Soil and Water Assessment Tool (SWAT) was used to simulate streamflow for future periods. The Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were estimated and used for drought characterization at three time scales (3, 6, and 12 months). The lag time between meteorological and hydrological droughts is approximately 1–3 months. The results suggest that the CPRB is likely to experience less frequent hydro-meteorological drought events in the future. The meteorological drought is projected to be longer, more severe, and intense. The severity of hydrological drought tends to decrease, but the intensity could increase. Climate change has been discovered to alter drought behaviors in the CPRB, posing a threat to drought monitoring and warning because droughts will be less predictable in future climate scenarios. The characterization of historical and future droughts over the CPRB is therefore valuable in developing an improved understanding of the risks of drought. Full article
Show Figures

Figure 1

Back to TopTop