Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = S. haemastoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4701 KiB  
Article
Nitric Oxide Synthase in the Central Nervous System and Peripheral Organs of Stramonita haemastoma: Protein Distribution and Gene Expression in Response to Thermal Stress
by Mattia Toni, Federica De Angelis, Maria Carmela Bonaccorsi Di Patti and Carla Cioni
Mar. Drugs 2015, 13(11), 6636-6664; https://doi.org/10.3390/md13116636 - 30 Oct 2015
Cited by 7 | Viewed by 5586
Abstract
Nitric oxide (NO) is generated via the oxidation of l-arginine by the enzyme NO synthase (NOS) both in vertebrates and invertebrates. Three NOS isoforms, nNOS, iNOS and eNOS, are known in vertebrates, whereas a single NOS isoform is usually expressed in invertebrates, sharing [...] Read more.
Nitric oxide (NO) is generated via the oxidation of l-arginine by the enzyme NO synthase (NOS) both in vertebrates and invertebrates. Three NOS isoforms, nNOS, iNOS and eNOS, are known in vertebrates, whereas a single NOS isoform is usually expressed in invertebrates, sharing structural and functional characteristics with nNOS or iNOS depending on the species. The present paper is focused on the constitutive Ca2+/calmodulin-dependent nNOS recently sequenced by our group in the neogastropod Stramonita haemastoma (ShNOS). In this paper we provide new data on cellular distribution of ShNOS in the CNS (pedal ganglion) and peripheral organs (osphradium, tentacle, eye and foot) obtained by WB, IF, CM and NADPHd. Results demonstrated that NOS-like proteins are widely expressed in sensory receptor elements, neurons and epithelial cells. The detailed study of NOS distribution in peripheral and central neurons suggested that NOS is both intracellular and presynaptically located. Present findings confirm that NO may have a key role in the central neuronal circuits of gastropods and in sensory perception. The physiological relevance of NOS enzymes in the same organs was suggested by thermal stress experiments demonstrating that the constitutive expression of ShNOS is modulated in a time- and organ-dependent manner in response to environmental stressors. Full article
(This article belongs to the Special Issue Marine Compounds and Their Application in Neurological Disorders)
Show Figures

Graphical abstract

Back to TopTop