Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = S-nitrosylated glutathione reductase (GSNOR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1097 KB  
Review
NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants
by Francisco Javier Romera, María José García, Carlos Lucena, Macarena Angulo and Rafael Pérez-Vicente
Int. J. Mol. Sci. 2023, 24(16), 12617; https://doi.org/10.3390/ijms241612617 - 9 Aug 2023
Cited by 9 | Viewed by 2399
Abstract
Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these [...] Read more.
Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants. Full article
(This article belongs to the Special Issue Nitric Oxide Signalling and Metabolism in Plants 2023)
Show Figures

Figure 1

16 pages, 2907 KB  
Article
High Nitric Oxide Concentration Inhibits Photosynthetic Pigment Biosynthesis by Promoting the Degradation of Transcription Factor HY5 in Tomato
by Lingyu Wang, Rui Lin, Jin Xu, Jianing Song, Shujun Shao, Jingquan Yu and Yanhong Zhou
Int. J. Mol. Sci. 2022, 23(11), 6027; https://doi.org/10.3390/ijms23116027 - 27 May 2022
Cited by 15 | Viewed by 3583
Abstract
Photosynthetic pigments in higher plants, including chlorophyll and carotenoid, are crucial for photosynthesis and photoprotection. Previous studies have shown that nitric oxide (NO) plays a dual role in plant photosynthesis. However, how pigment biosynthesis is suppressed by NO remains unclear. In this study, [...] Read more.
Photosynthetic pigments in higher plants, including chlorophyll and carotenoid, are crucial for photosynthesis and photoprotection. Previous studies have shown that nitric oxide (NO) plays a dual role in plant photosynthesis. However, how pigment biosynthesis is suppressed by NO remains unclear. In this study, we generated NO-accumulated gsnor mutants, applied exogenous NO donors, and used a series of methods, including reverse transcription quantitative PCR, immunoblotting, chromatin immunoprecipitation, electrophoretic mobility shift, dual-luciferase, and NO content assays, to explore the regulation of photosynthetic pigment biosynthesis by NO in tomato. We established that both endogenous and exogenous NO inhibited pigment accumulation and photosynthetic capacities. High levels of NO stimulated the degradation of LONG HYPOCOTYL 5 (HY5) protein and further inactivated the transcription of genes encoding protochlorophyllide oxidoreductase C (PORC) and phytoene synthase 2 (PSY2)—two enzymes that catalyze the rate-limiting steps in chlorophyll and carotenoid biosynthesis. Our findings provide a new insight into the mechanism of NO signaling in modulating HY5-mediated photosynthetic pigment biosynthesis at the transcriptional level in tomato plants. Full article
(This article belongs to the Special Issue Nitric Oxide Signalling and Metabolism in Plants)
Show Figures

Figure 1

21 pages, 2642 KB  
Article
Proteomic Investigation of S-Nitrosylated Proteins During NO-Induced Adventitious Rooting of Cucumber
by Lijuan Niu, Jihua Yu, Weibiao Liao, Jianming Xie, Jian Yu, Jian Lv, Xuemei Xiao, Linli Hu and Yue Wu
Int. J. Mol. Sci. 2019, 20(21), 5363; https://doi.org/10.3390/ijms20215363 - 28 Oct 2019
Cited by 47 | Viewed by 4468
Abstract
Nitric oxide (NO) acts an essential signaling molecule that is involved in regulating various physiological and biochemical processes in plants. However, whether S-nitrosylation is a crucial molecular mechanism of NO is still largely unknown. In this study, 50 μM S-nitrosoglutathione (GSNO) [...] Read more.
Nitric oxide (NO) acts an essential signaling molecule that is involved in regulating various physiological and biochemical processes in plants. However, whether S-nitrosylation is a crucial molecular mechanism of NO is still largely unknown. In this study, 50 μM S-nitrosoglutathione (GSNO) treatment was found to have a maximum biological effect on promoting adventitious rooting in cucumber. Meanwhile, removal of endogenous NO significantly inhibited the development of adventitious roots implying that NO is responsible for promoting the process of adventitious rooting. Moreover, application of GSNO resulted in an increase of intracellular S-nitrosothiol (SNO) levels and endogenous NO production, while decreasing the S-nitrosoglutathione reductase (GSNOR) activity during adventitious rooting, implicating that S-nitrosylation might be involved in NO-induced adventitious rooting in cucumber. Furthermore, the identification of S-nitrosylated proteins was performed utilizing the liquid chromatography/mass spectrometry/mass spectrometry (LC-MS/MS) and biotin-switch technique during the development of adventitious rooting. Among these proteins, the activities and S-nitrosylated level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), tubulin alpha chain (TUA), and glutathione reductase (GR) were further analyzed as NO direct targets. Our results indicated that NO might enhance the S-nitrosylation level of GAPDH and GR, and was found to subsequently reduce these activities and transcriptional levels. Conversely, S-nitrosylation of TUA increased the expression level of TUA. The results implied that S-nitrosylation of key proteins seems to regulate various pathways through differential S-nitrosylation during adventitious rooting. Collectively, these results suggest that S-nitrosylation could be involved in NO-induced adventitious rooting, and they also provide fundamental evidence for the molecular mechanism of NO signaling during adventitious rooting in cucumber explants. Full article
Show Figures

Figure 1

Back to TopTop