Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = RhARF18

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4878 KiB  
Article
Arabidopsis ASYMMETRIC LEAVES2 and Nucleolar Factors Are Coordinately Involved in the Perinucleolar Patterning of AS2 Bodies and Leaf Development
by Sayuri Ando, Mika Nomoto, Hidekazu Iwakawa, Simon Vial-Pradel, Lilan Luo, Michiko Sasabe, Iwai Ohbayashi, Kotaro T. Yamamoto, Yasuomi Tada, Munetaka Sugiyama, Yasunori Machida, Shoko Kojima and Chiyoko Machida
Plants 2023, 12(20), 3621; https://doi.org/10.3390/plants12203621 - 19 Oct 2023
Cited by 1 | Viewed by 2598
Abstract
Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a key role in the formation of flat symmetric leaves. AS2 represses the expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). AS2 interacts in vitro with the CGCCGC sequence in ETT [...] Read more.
Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a key role in the formation of flat symmetric leaves. AS2 represses the expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). AS2 interacts in vitro with the CGCCGC sequence in ETT/ARF3 exon 1. In cells of leaf primordia, AS2 localizes at peripheral regions of the nucleolus as two AS2 bodies, which are partially overlapped with chromocenters that contain condensed 45S ribosomal DNA repeats. AS2 contains the AS2/LOB domain, which consists of three sequences conserved in the AS2/LOB family: the zinc finger (ZF) motif, the ICG sequence including the conserved glycine residue, and the LZL motif. AS2 and the genes NUCLEOLIN1 (NUC1), RNA HELICASE10 (RH10), and ROOT INITIATION DEFECTIVE2 (RID2) that encode nucleolar proteins coordinately act as repressors against the expression of ETT/ARF3. Here, we examined the formation and patterning of AS2 bodies made from as2 mutants with amino acid substitutions in the ZF motif and the ICG sequence in cells of cotyledons and leaf primordia. Our results showed that the amino acid residues next to the cysteine residues in the ZF motif were essential for both the formation of AS2 bodies and the interaction with ETT/ARF3 DNA. The conserved glycine residue in the ICG sequence was required for the formation of AS2 bodies, but not for the DNA interaction. We also examined the effects of nuc1, rh10, and rid2 mutations, which alter the metabolism of rRNA intermediates and the morphology of the nucleolus, and showed that more than two AS2 bodies were observed in the nucleolus and at its periphery. These results suggested that the patterning of AS2 bodies is tightly linked to the morphology and functions of the nucleolus and the development of flat symmetric leaves in plants. Full article
(This article belongs to the Special Issue Ribosome Heterogeneity in Plants)
Show Figures

Figure 1

11 pages, 2550 KiB  
Article
RhAGL24 Regulating Auxin-Related Gene RhARF18 Affects Stamen Petaloidy in Rose
by Lin Liu, Yanchao Guo, Zhicheng Wu, Haoran Ren, Yunhe Jiang, Nan Ma, Junping Gao and Xiaoming Sun
Horticulturae 2022, 8(5), 407; https://doi.org/10.3390/horticulturae8050407 - 6 May 2022
Cited by 3 | Viewed by 2752
Abstract
AGAMOUS-LIKE 24 (AGL24) is a key gene regulating floral transition, but its involvement in flower organ identity remains largely unknown. In this study, we found that RhAGL24 is strongly related to petal and stamen development in rose. Its expression increases rapidly at the [...] Read more.
AGAMOUS-LIKE 24 (AGL24) is a key gene regulating floral transition, but its involvement in flower organ identity remains largely unknown. In this study, we found that RhAGL24 is strongly related to petal and stamen development in rose. Its expression increases rapidly at the petal primordium development stage and maintains a high level until the complete differentiation stage. RhAGL24 silencing increases the number of malformed petals and decreases the number of stamens, indicating that this gene affects stamen petaloidy. RhAG (AGAMOUS), a class C gene associated with petal and stamen development, is downregulated in RhAGL24-silenced plants. Moreover, we found that RhAGL24 could directly bind to the promoter region of RhARF18 (AUXIN RESPONSE FACTORS 18), a regulator of RhAG. Our results suggested that RhAGL24-RhARF18 module regulates stamen petaloidy in rose and provide new insights into the function of AGL24 for plants. Full article
Show Figures

Figure 1

19 pages, 2749 KiB  
Review
Roles of ASYMMETRIC LEAVES2 (AS2) and Nucleolar Proteins in the Adaxial–Abaxial Polarity Specification at the Perinucleolar Region in Arabidopsis
by Hidekazu Iwakawa, Hiro Takahashi, Yasunori Machida and Chiyoko Machida
Int. J. Mol. Sci. 2020, 21(19), 7314; https://doi.org/10.3390/ijms21197314 - 3 Oct 2020
Cited by 19 | Viewed by 8117
Abstract
Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal–distal, adaxial–abaxial, and medial–lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial–abaxial partitioning, encodes a plant-specific nuclear protein and directly represses [...] Read more.
Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal–distal, adaxial–abaxial, and medial–lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial–abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Leaf Morphogenesis)
Show Figures

Figure 1

Back to TopTop