Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = RhAP2/ERF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14605 KiB  
Article
Genome-Wide Identification and Expression Analysis of the AP2/ERF Transcription Factor Gene Family in Hybrid Tea Rose Under Drought Stress
by Xinyu Yan, Wei Huang, Cheng Liu, Xuan Hao, Chengye Gao, Minghua Deng and Jinfen Wen
Int. J. Mol. Sci. 2024, 25(23), 12849; https://doi.org/10.3390/ijms252312849 - 29 Nov 2024
Viewed by 1102
Abstract
Drought stress is an important factor that reduces plant biomass production and quality. The APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) gene family is widely involved in biological processes such as plant growth, development, and stress response. However, the characteristics of the AP2/ERF gene [...] Read more.
Drought stress is an important factor that reduces plant biomass production and quality. The APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) gene family is widely involved in biological processes such as plant growth, development, and stress response. However, the characteristics of the AP2/ERF gene family in hybrid tea rose (Rosa × hybrida) and their potential functions in responding to drought stress are still unclear. In the current study, 127 AP2/ERF genes were identified in hybrid tea rose. Phylogenetic analysis showed that the corresponding 127 AP2/ERF transcription factors belonged to five subfamilies. There was a large number of cis-acting elements in the AP2/ERF gene promoters related to regulation of stress response, growth and development. By examining the RNA sequencing data in the PlantExp database, the RhAP2/ERF genes exhibiting tissue-specific and stress-responsive expression in rose were identified. Furthermore, three candidate RhAP2/ERF genes (RhDREB36, RhERF59, and RhDREB44) that might participate in drought response were determined via qRT-PCR analysis in rose cultivars under drought treatment. Subcellular localization analysis revealed that RhDREB44 was located in the nucleus. These results provide a foundation for exploring the regulatory functions of RhAP2/ERF genes in the growth and development of roses, as well as for selecting key genes for future molecular breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 4351 KiB  
Article
Integrated Metabolomic and Transcriptomic Analysis of the Quinoa Seedling Response to High Relative Humidity Stress
by Xinyi Li, Ping Zhang, Jia Liu, Hongxin Wang, Junna Liu, Hanxue Li, Heng Xie, Qianchao Wang, Li Li, Shan Zhang, Liubin Huang, Chenghong Liu and Peng Qin
Biomolecules 2023, 13(9), 1352; https://doi.org/10.3390/biom13091352 - 5 Sep 2023
Cited by 4 | Viewed by 1847
Abstract
Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety (“Dianli-439”) and a sensitive variety (“Dianli-969”) were subjected [...] Read more.
Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety (“Dianli-439”) and a sensitive variety (“Dianli-969”) were subjected to morphological and physiological measurements and metabolome and transcriptome analyses to investigate their response to high RH stress. In total, 1060 metabolites were detected, and lipids and flavonoids were the most abundant, with 173 and 167 metabolites, respectively. In total, 13,095 differentially expressed genes were identified, and the results showed that abscisic acid, auxin, and jasmonic-acid-related genes involved in plant hormone signaling may be involved in the response of quinoa seedlings to high RH stress. The analysis of the transcription factors revealed that the AP2/ERF family may also play an important role in the response to high RH stress. We identified the possible regulatory mechanisms of the hormone signaling pathways under high RH stress. Our findings can provide a basis for the selection and identification of highly resistant quinoa varieties and the screening of the metabolite-synthesis- and gene-regulation-related mechanisms in quinoa in response to RH stress. Full article
(This article belongs to the Collection Molecular Biology: Feature Papers)
Show Figures

Figure 1

Back to TopTop