Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Retama monosperma L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 423 KiB  
Review
A Comprehensive Review of the Pharmacological Properties and Bioactive Components of Retama monosperma
by Adil El Yadini, Youssef Elouafy, Ehsan Amiri-Ardekani, Mina Shafiee, Amirhosein Firouzi, Najmeh Sasani, Asaad Khalid, Ashraf N. Abdalla, Saad Bakrim, Ching Siang Tan, Khang Wen Goh, Long Chiau Ming and Abdelhakim Bouyahya
Molecules 2023, 28(4), 1708; https://doi.org/10.3390/molecules28041708 - 10 Feb 2023
Cited by 5 | Viewed by 3640
Abstract
Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), known locally as “R’tam”, is a spontaneous and annual herb that belongs to the Fabaceae family. It is native to the Mediterranean regions, specifically in the desert areas and across the Middle Atlas in [...] Read more.
Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), known locally as “R’tam”, is a spontaneous and annual herb that belongs to the Fabaceae family. It is native to the Mediterranean regions, specifically in the desert areas and across the Middle Atlas in Morocco. This plant has been extensively used in folk medicine and it is rich in bioactive compounds, including polyphenols, flavonoids, and alkaloids. Current research efforts are focusing on the development of novel natural drugs as alternatives to various organic and non-organic chemical products from Retama monosperma. In addition, extract, and isolated compounds obtained from different parts of the chosen plant have been described to exhibit multiple biological and pharmacological properties such as antioxidant, anti-aging, anti-inflammatory, antihypertensive, anti-helminthic, disinfectant, diuretic, and hypoglycemic effects. The plant-derived extract also acts as an antimicrobial agent, which is highly efficient in the treatment of bacterial, viral, and fungal infections. Its antiproliferative effects are associated with some mechanisms, such as the inhibition of cell cycle arrest and apoptosis. In light of these assessments, we critically highlight the beneficial effects of the flowers, stems, seeds extracts, and isolated compounds from R. monosperma (L.) Boiss in human health care, industrial, and other applications, as well as the possible ways to be employed as a potential natural source for future drug discovery. Full article
(This article belongs to the Special Issue Natural Products That Might Change Society)
Show Figures

Figure 1

14 pages, 2349 KiB  
Article
Impact of Mycorrhization on Phosphorus Utilization Efficiency of Acacia gummifera and Retama monosperma under Salt Stress
by Abdessamad Fakhech, Martin Jemo, Najat Manaut, Lahcen Ouahmane and Mohamed Hafidi
Forests 2021, 12(5), 611; https://doi.org/10.3390/f12050611 - 13 May 2021
Cited by 12 | Viewed by 2405
Abstract
The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue [...] Read more.
The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop