Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Regge–Teitelboim equations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 358 KiB  
Article
Energy–Momentum Pseudotensor and Superpotential for Generally Covariant Theories of Gravity of General Form
by Roman Ilin and Sergey Paston
Universe 2020, 6(10), 173; https://doi.org/10.3390/universe6100173 - 11 Oct 2020
Cited by 3 | Viewed by 2354
Abstract
The current paper is devoted to the investigation of the general form of the energy–momentum pseudotensor (pEMT) and the corresponding superpotential for the wide class of theories. The only requirement for such a theory is the general covariance of the action without any [...] Read more.
The current paper is devoted to the investigation of the general form of the energy–momentum pseudotensor (pEMT) and the corresponding superpotential for the wide class of theories. The only requirement for such a theory is the general covariance of the action without any restrictions on the order of derivatives of the independent variables in it or their transformation laws. As a result of the generalized Noether procedure, we obtain a recurrent chain of the equations, which allows one to express canonical pEMT as a divergence of the superpotential. The explicit expression for this superpotential is also given. We discuss the structure of the obtained expressions and the conditions for the derived pEMT conservation laws to be satisfied independently (fully or partially) by the equations of motion. Deformations of the superpotential form for theories with a change in the independent variables in action are also considered. We apply these results to some interesting particular cases: general relativity and its modifications, particularly mimetic gravity and Regge–Teitelboim embedding gravity. Full article
18 pages, 357 KiB  
Article
Non-Relativistic Limit of Embedding Gravity as General Relativity with Dark Matter
by Sergey Paston
Universe 2020, 6(10), 163; https://doi.org/10.3390/universe6100163 - 29 Sep 2020
Cited by 17 | Viewed by 2455
Abstract
Regge-Teitelboim embedding gravity is the modified gravity based on a simple string-inspired geometrical principle—our spacetime is considered here as a 4-dimensional surface in a flat bulk. This theory is similar to the recently popular theory of mimetic gravity—the modification of gravity appears in [...] Read more.
Regge-Teitelboim embedding gravity is the modified gravity based on a simple string-inspired geometrical principle—our spacetime is considered here as a 4-dimensional surface in a flat bulk. This theory is similar to the recently popular theory of mimetic gravity—the modification of gravity appears in both theories as a result of the change of variables in the action of General Relativity. Embedding gravity, as well as mimetic gravity, can be used in explaining the dark matter mystery since, in both cases, the modified theory can be presented as General Relativity with additional fictitious matter (embedding matter or mimetic matter). For the general case, we obtain the equations of motion of embedding matter in terms of embedding function as a set of first-order dynamical equations and constraints consistent with them. Then, we construct a non-relativistic limit of these equations, in which the motion of embedding matter turns out to be slow enough so that it can play the role of cold dark matter. The non-relativistic embedding matter turns out to have a certain self-interaction, which could be useful in the context of solving the core-cusp problem that appears in the Λ-Cold Dark Matter (ΛCDM) model. Full article
Show Figures

Graphical abstract

15 pages, 283 KiB  
Article
Modifications of Gravity Via Differential Transformations of Field Variables
by Anton Sheykin, Dmitry Solovyev, Vladimir Sukhanov and Sergey Paston
Symmetry 2020, 12(2), 240; https://doi.org/10.3390/sym12020240 - 5 Feb 2020
Cited by 12 | Viewed by 2207
Abstract
We discuss field theories appearing as a result of applying field transformations with derivatives (differential field transformations, DFTs) to a known theory. We begin with some simple examples of DFTs to see the basic properties of the procedure. In this process, the dynamics [...] Read more.
We discuss field theories appearing as a result of applying field transformations with derivatives (differential field transformations, DFTs) to a known theory. We begin with some simple examples of DFTs to see the basic properties of the procedure. In this process, the dynamics of the theory might either change or be conserved. After that, we concentrate on the theories of gravity which appear as a result of various DFTs applied to general relativity, namely the mimetic gravity and Regge–Teitelboim embedding theory. We review the main results related to the extension of dynamics in these theories, as well as the possibility to write down the action of a theory after DFTs as the action of the original theory before DFTs plus an additional term. Such a term usually contains some constraints with Lagrange multipliers and can be interpreted as an action of additional matter, which might be of use in cosmological applications, e.g., for the explanation of the effects of dark matter. Full article
(This article belongs to the Special Issue Cosmology)
Back to TopTop