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Abstract: Regge-Teitelboim embedding gravity is the modified gravity based on a simple string-inspired
geometrical principle—our spacetime is considered here as a 4-dimensional surface in a flat bulk.
This theory is similar to the recently popular theory of mimetic gravity—the modification of gravity
appears in both theories as a result of the change of variables in the action of General Relativity.
Embedding gravity, as well as mimetic gravity, can be used in explaining the dark matter mystery
since, in both cases, the modified theory can be presented as General Relativity with additional
fictitious matter (embedding matter or mimetic matter). For the general case, we obtain the equations
of motion of embedding matter in terms of embedding function as a set of first-order dynamical
equations and constraints consistent with them. Then, we construct a non-relativistic limit of these
equations, in which the motion of embedding matter turns out to be slow enough so that it can
play the role of cold dark matter. The non-relativistic embedding matter turns out to have a certain
self-interaction, which could be useful in the context of solving the core-cusp problem that appears in
the Λ-Cold Dark Matter (ΛCDM) model.

Keywords: dark matter; modified gravity; isometric embedding; Regge-Teitelboim gravity;
embedding theory; self-interacting dark matter; core-cusp problem

1. Introduction

In the attempts to explain some astronomical observations in the framework of General Relativity
(GR), certain discrepancies arise, which can be solved by an assumption of the existence of an additional
matter. This matter is called Dark Matter (DM) since it cannot be directly observed. Such discrepancies
appear at a wide range of scales: from galactic to Hubble ones; see, e.g., Reference [1]. In the case of
galactic, it is the deviation of the stars’ motion from the GR predictions in the assumption that stars are
moving only in the gravitational field of visible matter (“rotation curves”). In order to explain this
discrepancy, an assumption is made that there is some amount of DM in galaxies besides ordinary
matter. The density of DM decreases slower than ordinary matter density, so it forms a halo around a
galaxy. At the larger scales, the observations of gravitational lensing, interpreted in the GR framework,
indicate a significant amount of matter in the regions with a low amount of visible matter. This fact
can also be explained using the assumption of the presence of DM in such regions. At the largest
cosmological scale, the assumption of the homogeneous distribution of DM (in the amount of 26% of
the Universe total mass-energy), along with the existence of dark energy (69%) in which properties
are close to the cosmological constant, ensures the matching of average mass-energy density with the
critical density, as well as provides the solution of the structure formation problem. For a historical
survey of the DM-related observational discoveries and theoretic arguments, see Reference [2].

The majority of the currently available observational data (including the very important data
related to the cosmic microwave background anisotropy) can be satisfactorily described by the Λ-Cold
Dark Matter (ΛCDM) model, which is a Standard Model of modern cosmology. In its framework,
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DM can be considered as non-relativistic dust matter, which produces the same gravitational field as
ordinary matter, but non-gravitational interaction of dark matter with ordinary one is either absent
or very weak and thus undetectable [3]. It should, however, be noted that some observations on the
scales of galaxies remain not quite consistent with N-body simulations in ΛCDM model. As examples
of such inconsistencies, we can mention the core-cusp problem, as well as the missing satellites and
too-big-to-fail problems; see details in recent reviews [4–6].

Numerous attempts to detect DM have been fruitless so far [7,8], which makes a mystery of
the DM nature one of the most intriguing problems of modern physics. There are many hypotheses
(see, e.g., References [9–11]) related to the nature of DM, the choice of which determines a way to detect
it. The failures of detecting can be connected to the weakness of the coupling between the dark and the
ordinary matter. However, a more radical explanation exists. Since DM undoubtedly interacts with
gravity, the absence of its participation in other interactions can be interpreted as an indication of the
fact that DM is not a real matter coupled with Einsteinian gravity, but rather is an effect of a description
of the gravitational interaction in the framework of a certain modified theory of gravity. In such an
approach, DM turns out to be absent from the point of view of the fundamental theory, but it reveals
its existence through interaction with gravity (via a contribution to Einstein equations) if the latter is
described in the framework of GR instead of its description in the context of the modified theory.

One possible candidate for the role of this modified theory is MOND [12]; for the review of
attempts to explain observations in the MOND framework, see, e.g., Reference [6] and the references
therein. However, modifications that have additional degrees of freedom in comparison with GR
seem more promising (see the review of modifications in References [6,13,14]). In consideration of
modified theory in the context of GR, these degrees of freedom turn out to correspond to DM. In recent
years, strong attention has been drawn to the mimetic gravity [15], which allows one to introduce
“dark matter without dark matter” [15] in the described manner. This model appears as a result of the
change of variables, which isolates the conformal mode of the metric. Since this change of variables
involves differentiation (being a particular case of the differential field transformations in GR [16]),
it leads to the extension of dynamics of the theory, and some additional degrees of freedom w.r.t. GR
appear. These degrees of freedom describe the mimetic matter, which might be interpreted as DM.
The possibility to reformulate the mimetic gravity as the GR with an additional contribution to the
action [17] shows that the mimetic matter is a potentially moving dust effectively described by two
scalar fields. The restriction of the potentiality of motion can be lifted [18], and the introduction of a
pressure is also possible [19], but the theory nevertheless requires significant extensions to resolve the
discrepancies mentioned above in the framework of mimetic gravity, see, e.g., References [20,21].

Another example of modified theory, in which origins lie in the procedure of differential field
transformations in the GR, is Regge-Teitelboim embedding gravity (also known as embedding theory) [22].
It appears as a result of the following change of variables:

gµν = (∂µya)(∂νyb) ηab (1)

(here and hereafter µ, ν, . . . = 0, 1, 2, 3) in the Einstein-Hilbert action of GR. This change of variables,
in contrast with the mimetic one, has a deep geometric nature, since (1) is a formula for induced
metric on the 4-dimensional surface described by embedding function ya(xµ) in an ambient spacetime
with Minkowski metric ηab. Therefore, the embedding gravity is based on a simple string-inspired
assumption that our spacetime is not merely an abstract pseudo-Riemannian space but rather a surface
in a flat ambient spacetime of higher dimension. It should be stressed that, in the present approach,
extra dimensions appear in the ambient space, whereas our spacetime remains four-dimensional, so the
compactification problem, which is well known in the string theory, does not arise here. In accordance
with the Janet-Cartan-Friedman theorem [23], the minimal number of dimensions of a spacetime in
which an arbitrary 4-dimensional surface can be locally embedded and is equal to ten, so the ambient
spacetime in embedding gravity is usually taken to be 10-dimensional. In the present paper, we will
assume that, as well, so, a, b, . . . = ∅, 1, . . . , 9.
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After the appearance of Reference [22], the ideas of embedding gravity were discussed in
Reference [24] and were used lately by many authors with the aim of description of gravity, including
its quantization (see, e.g., References [25–34]). In this framework, one can try to explain the effects of
DM in the assumption of a strict spatial homogeneity and isotropy of the universe [33,35]. To do it at
the smaller scales, one might try to reformulate the theory as the GR with an additional contribution
corresponding to some fictitious matter [36] and to examine the properties of this embedding matter.
The number of variables that describe embedding matter turns out to be sufficiently large, and the
properties of this matter are sufficiently rich to hope for a successful description of observational
properties of DM in the framework of embedding gravity, without the introduction of additional
extensions (as it is done, e.g., in the framework of mimetic gravity).

The fact that embedding gravity is based on the simple geometric idea without any ad hoc
extensions and arbitrary constants, as well as the potential quantization advantages connected with the
presence of flat ambient spacetime in the formulation of the theory (see, e.g., References [25,28]) makes
this modification of gravity, in our opinion, an especially promising in the search for an explanation of
the mystery of DM.

In the present paper, we will analyze the equations of motion of embedding matter in the
non-relativistic limit, in which the definition was proposed in Reference [37]. In this analysis, we will
follow Reference [37] in part, but the calculations will be performed in a more straightforward and
geometrically clear manner. In Reference [37], a non-square vielbein ea

µ ≡ ∂µya was used instead of
embedding function ya (such an approach was also used in another variant of embedding gravity [32]),
and such vielbein was required to satisfy the integrability condition ∂µea

ν = ∂νea
µ. Due to this choice of

independent variables, the embedding function ya, which describes 4-dimensional surface, appeared in
the calculations only in an implicit way. In the present paper, we show a straightforward way to obtain
the same result, using the embedding function ya as one of the variables describing embedding matter.

In Section 2, we remind the formulation of embedding gravity, both in its original form, based on
the differential field transformations in GR, as well as in the form of GR with additional embedding
matter contribution in the action, and write down its equations of motion. In Section 3, we analyze
and rewrite these equations in the form of dynamical equations (with first-order time derivatives only)
for the independent variables describing embedding matter and constraints that restrict the choice of
these variables at the initial moment of time. In Section 4, we consider the equations of motion in the
limiting case of non-relativistic approximation, whereas, in Section 5, the deviations from this limit
are considered.

We succeeded in showing that the embedding matter in the studied limit turns out to be
a non-relativistic matter with certain self-interaction. If this self-interaction is not very strong,
this behavior quite well corresponds to the known properties of DM at all scales, but the very presence
of self-interaction could be useful. For example, the models in which DM is the Self-Interacting
Dark Matter (SIDM) [11] can be considered as solutions to the well-known core-cusp problem.
This problem manifests itself in the fact that, according to calculations, the density of DM without
self-interaction must increase rapidly towards the center of a galaxy, forming “cuspy” profiles.
However, the observations do not confirm this, giving “cored” profiles. The further examination
of the equations of embedding matter motion, obtained in the non-relativistic limit, would allow to
determine its behavior in different regimes and to solve the question of applicability of the discussed
approach to the solution of the core-cusp problem and other observational discrepancies on the scales
of galaxies, some of which were mentioned above.

2. Embedding Gravity

Regge-Teitelboim embedding gravity (or embedding theory) is the theory of modified gravity
appearing as a result of the change of variables (1) in the action of GR:

S = − 1
2κ

∫
d4x
√
−g R + Sm, (2)
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where Sm is a contribution of an ordinary matter. In this approach, the independent variable describing
gravity is an embedding function ya(xµ) (we remind that µ, ν, . . . = 0, 1, 2, 3; a, b, . . . = ∅, 1, . . . , 9;
we also assume that the signature of the flat ambient spacetime is (+− . . .−), so the metric gµν has the
signature (+−−−)). The variation of (2) w.r.t. independent variable ya leads to the Regge-Teitelboim
(RT) equations [22]

Dµ

(
(Gµν −κ Tµν)∂νya

)
= 0, (3)

where Dµ is a covariant derivative, Gµν is the Einstein tensor, and Tµν is the EMT of the ordinary matter.
In order to simplify the analysis of the embedding gravity from the familiar general-relativistic

point of view, one can rewrite the RT Equation (3) as a set of equations [25]:

Gµν = κ (Tµν + τµν) , (4)

Dµ

(
τµν∂νya

)
= 0. (5)

The first one can be interpreted as the Einstein equation with an additional contribution τµν to EMT
from a certain embedding matter, whereas the second one plays the role of the equation of motion for
this fictitious matter. Equation (5) resembles a local conservation law for a set of some currents:

Dµ jµa = 0 ⇔ ∂µ

(√
−g jµa

)
= 0, (6)

jµ
a = τµν∂νya. (7)

There is a possibility to reformulate the embedding gravity as GR with some additional matter
not only at the level of equations of motion but also at the level of action. To do this, one needs to add
certain action of embedding matter Sadd to the action (2):

S = SEH + Sm + Sadd. (8)

The metric here is assumed to be an independent variable, and the condition (1) appears as a
consequence of the equations of motion. In Reference [36], several ways to choose Sadd were considered.
Let us introduce two of them which seem the most promising in the context of the analysis of
embedding matter properties.

First of all, one can choose the symmetric tensor τµν, along with embedding function ya,
as independent variables describing embedding matter [18]:

Sadd
1 =

1
2

∫
d4x

√
−g
(
(∂µya)(∂νya)− gµν

)
τµν, (9)

so the independent quantity τµν, which is playing the role of a Lagrange multiplier, turns out to be an
EMT of embedding matter. As an alternative, one can assume the independence of the set of currents
jµa in Equation (6) instead of τµν (ya is still independent) [36]:

Sadd
2 =

∫
d4x

√
−g
(

jµ
a ∂µya − tr

√
gµν jνa jαa

)
. (10)

Here, it is assumed that one needs to take the square root of matrix with the indices µ and α and
subsequently take the trace of the result (the operation tr). In terms of jµ

a , the EMT of embedding
matter can be written as

τµ
α =

√
gµν jν

a jαa, (11)
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where the square root of matrix is again present; see details in Reference [36]. Note that (11) is consistent
with (7).

The set of currents jµ
a can be interpreted as four vectors (indexed by µ) of the 10-dimensional flat

bulk. In Sections 4 and 5, we will analyze the behavior of embedding matter in such case that all these
four vectors are non-relativistic in the bulk [37], i.e.,

jµa = δ∅
a jµ + δjµ

a , δjµ
a → 0. (12)

As we said in the Introduction, the analysis will be performed partially in spite of Reference [37] but
with more straightforward and geometrically clear way of calculations.

If the Expression (9) is used as a contribution of embedding matter, the full set of its equations of
motion has the form:

(∂µya)(∂νyb) ηab = gµν, (13)

Dµ

(
τµν∂νya

)
= 0, (14)

and the metric gµν needs to be found through a separately considered Einstein Equation (4)
(the connection Γα

µν that is present in the covariant derivative Dµ, is represented by Christoffel symbols
which are expressed through the metric). The form of equations of motion of embedding matter is
different in the case where one takes the set of currents jµ

a as independent variables instead of τµν,
and (10) is chosen as an action of the embedding matter; see Reference [36].

3. Equations of Motion of Embedding Matter

Let us note that the satisfaction of (13) leads to the relation that is well known in the formalism of
the embedding theory (see, e.g., Reference [29]):

(∂βya)Dµ∂νya = 0. (15)

It means that the second fundamental form of the surface

ba
µν ≡ Dµ∂νya (16)

is transverse w.r.t. index a, i.e., orthogonal to the surface. Using (15), one can rewrite (14) as a set of
two equations:

Dµτµν = 0, (17)

τµνDµ∂νya = 0. (18)

Let us consider the equations of motion of embedding matter (13), (17) and (18) as a time x0

dynamics of the independent variables ya, τµν. Let us also recall another known formula of the theory
of embedded surfaces, which connects the curvature tensor Rαβµν and second fundamental form of the
surface ba

µν (see, e.g., Reference [29]):

Rαβµν = baαµba
βν − baανba

βµ. (19)

Taking α = µ = 0, β = i, ν = k in it (here and hereafter i, k, . . . = 1, 2, 3) and using (16), we obtain the
corollary of (13):

R0i0k = (D0∂0ya)ba
ik − (Di∂0ya)(Dk∂0ya). (20)
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The components of the second fundamental form of the surface ba
ik can be treated as a 6× 6 matrix,

since the pair of indices {ik}, w.r.t. which this quantity is symmetric, have six possible values, and the
index a also can take only six values (due to the transversality condition (15)) without the vanishing
of the quantity. In the generic case, where this matrix is invertible, one can use an “inverse” matrix,
introducing the quantity αik

a , which is uniquely defined by the relations

αik
a = αki

a , αik
a ∂µya = 0, αik

a ba
lm =

1
2

(
δi

lδ
k
m + δi

mδk
l

)
. (21)

Using this quantity, one can express the transverse part of D0∂0ya from (20), and since the tangent part
of it vanished due to (15), one finds that

D0∂0ya = αik
a
(
(Di∂0yb)(Dk∂0yb) + R0i0k

)
. (22)

We used only one equation of motion in the derivation of the relation (22), namely (13). Using (22)
in the other equations of motion (18), we obtain a new equation:

τ00αika((Di∂0yb)(Dk∂0yb) + R0i0k
)
+ 2τ0kDk∂0ya + τikDi∂kya = 0, (23)

which now can be used instead of (18). Using the quantity αik
a again, one can extract the components

of τik from this equation:

τlm = −αlm
a

(
τ00αika

(
(Di∂0yb)(Dk∂0yb) + R0i0k

)
+ 2τ0kDk∂0ya

)
. (24)

We are therefore able to express the components of τik through other variables, excluding it from the
set of independent variables.

As a result, only ya and τ0ν remain independent variables describing embedding matter, and the
equations of motions of this matter are reduced to (13) and (17) with (24), i.e., to the system of equations

(∂iya)(∂kya) = gik, (25)

(∂0ya)(∂kya) = g0k, (26)

(∂0ya)(∂0ya) = g00, (27)

D0τ00 = −Diτ
0i, (28)

D0τ0m = Dl

(
αlm

a

(
τ00αika

(
(Di∂0yb)(Dk∂0yb) + R0i0k

)
+ 2τ0kDk∂0ya

))
. (29)

Equation (25), in contrast with remaining Equations (26)–(29), does not contain time
derivatives. In the canonical formulation (different forms of it for embedding theory was studied
in References [22,26,29,30,38–41]), such equations are called constraints. In the examination
of constraints, after the discovery of primary constraints, one usually needs to check their
conservation in time in order to find secondary constraints. Let us find the conservation condition
for the constraint (25), using the covariant time derivative D0 instead of the ordinary one ∂0, for the
sake of convenience. These are equivalent, since change from ∂0 to D0 leads only to the appearance of
contribution proportional to a constraint. We obtain:

D0
(
(∂iya)(∂kya)

)
= (Di∂0ya)(∂kya) + (∂iya)(Dk∂0ya), (30)
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where we used that D0∂iya = Di∂0ya. Using the product rule in (30) and taking (26) into account,
we obtain the condition of the conservation of constraint (25):

(∂0ya)Di∂kya = 0 (31)

(note that this equation is a particular case of the above-mentioned relation (15)). Using the expression
for a covariant derivative, as well as relation (25), (26), one obtains

(∂0ya)∂i∂kya = Γ0,ik. (32)

In the generic case, when the three vectors (at different values of k) ∂kya, together with six vectors
(at different values of symmetric indices i, k), ∂i∂kya form a basis of nine vectors of the ambient space,
Equations (26) and (32), together with normalization Equation (27), allow us to uniquely determine
the quantity ∂0ya if the function ya(x0, xi) at the given moment is known.

Such expression defines the dynamics of the embedding function ya, providing the satisfaction
of (26) and (27), as well as the conservation of the constraint (25) that must be imposed when one
chooses ya at the initial moment of time x0. The remaining Equations (28) and (29) define the dynamics
of the remaining independent variables τ00 and τ0m, so the equations of motion of embedding matter
are reduced to the constraint (25) and dynamical equations for independent variables ya and τ0ν which
expresses their first time derivative through their values at the given moment of time.

In the general case, dynamical equation for ya turns out to be quite bulky, but it can nevertheless
be written in an explicit form. To do that, let us notice that, at the fixed x0, the embedding function
ya(x0, xi) defines a certain 3-dimensional surface in the ambient spacetime, so one can define a second
fundamental form of it:

3

ba
ik =

3
Di∂kya, (33)

where
3
Di is a 3-dimensional covariant derivative, which contains 3-dimensional Christoffel symbol

3
Γm

ik

dependent on 3-metric
3
gik = (∂iya)(∂kya). At different values of symmetric indices i, k, the quantity

3

ba
ik

defines six vectors in the ambient space, which are orthogonal to the tangent vectors ∂iya according to
the properties of the second fundamental form. In the generic case, there is the only vector ωa defined
by conditions

ωa∂iya = 0, ωa
3

ba
ik = 0, |ωaωa| = 1. (34)

Using it, let us introduce a quantity
3
αik

a , defined by relations close to (21) [29]:

3
αik

a =
3
αki

a ,
3
αik

a ∂iya = 0,
3
αik

a ωa = 0,
3
αik

a
3

ba
lm =

1
2

(
δi

lδ
k
m + δi

mδk
l

)
. (35)

Contracting the quantities
3
αik

b and
3

ba
lm the other way, we obtain a projector on a corresponding

6-dimensional space:

3
αik

b

3

ba
ik = δa

b −
3
gik(∂iya)∂kyb −ωaωbωcωc, (36)

where the second and the third terms at the r.h.s. are projectors on 3-dimensional and 1-dimensional
spaces, correspondingly.

Using (26), let us rewrite (32) in the form

(∂0ya)
3

ba
ik = Γ0,ik − g0m

3
Γm

ik . (37)
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Multiplying it by
3
αik

b and using (36), we obtain

(∂0ya)
(

δa
b −

3
gik(∂iya)∂kyb −ωaωbωcωc

)
=

3
αik

b

(
Γ0,ik − g0m

3
Γm

ik

)
. (38)

Using it, together with (26), we can write

∂0ya =
3
gikg0i∂kya +

3
αaik

(
Γ0,ik − g0m

3
Γm

ik

)
+ ζωa, (39)

where we denote ζ = ωcωcωa∂0ya. Taking the properties (34), (35) into account, one can find the
quantity ζ by substitution of (39) into (27):

ζ =

√∣∣∣∣g00 − g0i
3
gikg0k −

3
αik

b
3
αbln

(
Γ0,ik − g0m

3
Γm

ik

)(
Γ0,ln − g0p

3
Γp

ln

)∣∣∣∣. (40)

As a result, we obtain the explicit form of the dynamical equation for the independent variable ya

in the form (39) with (40). Together with dynamical Equations (28) and (29) for the independent
variables τ0ν and the constraint (25) (which could only be imposed on ya at the initial moment of
time x0), Equation (39) forms a complete set of equations of motion of embedding matter. Equation (39)
automatically guarantees the satisfaction of constraint (25) at all moments of time after the initial one.

4. The Limiting Case of Non-Relativistic Approximation

Let us analyze the equations of motion of embedding gravity in the non-relativistic in the bulk
limit (12). We will assume that jµ

a and τµν (as well as the EMT of matter Tµν) are small enough, so due
to the small value of the gravitational constant κ, the r.h.s. of Einstein Equation (4) is small, and the
gravitational field turns out to be weak:

gµν = ηµν + hµν, hµν → 0, (41)

where ηµν is a flat metric. Let us firstly find a solution in a limiting case when δjµ
a = 0 (see (12)) and

hµν = 0. The corresponding quantities will be marked by a bar.
The limiting value of the set of currents can be written as

j̄µ
a = δ∅

a ρ̄τ ūµ, (42)

where the arbitrary vector jµ that appeared in (12) (it must be timelike for the action (10) to be real) is
presented in the form

jµ = ρ̄τ ūµ, ūµūν ḡµν = 1, (43)

where

ḡµν = ηµν. (44)

Substituting (42) in (11), we obtain that

τ̄µν = ρ̄τ ūµūν. (45)

Substituting (42) and (45) in (7), we notice that

δ∅
a ρ̄τ ūµ = ρ̄τ ūµūν∂νȳa ⇒ ūν∂νȳa = δ∅

a , (46)
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where we have assumed that ρ̄τ 6= 0 (the case ρ̄τ = 0 corresponds to τ̄µν = 0, i.e., the contribution of
embedding matter is absent, so this case is of no interest in the context of the analysis of its properties).

One can always choose coordinates xµ on a surface defined by embedding function ȳa(x) in such
a way that ȳ0 = x0. The relation (46) means that the vector δ∅

a is tangent to the surface at any point of
it so that one can impose an additional restriction on a coordinate system:

∂0ȳI = 0 (47)

(here and hereafter I, K, . . . = 1, . . . , 9). Therefore, we can conclude that there is a certain coordinate
system such that the embedding function ȳa(x) in the considered limit has the form

ȳ0 = x0, ȳI = ȳI(xi). (48)

On the other side, there is a certain coordinate system (possibly not the same as above, generally
speaking) in which the relation (44) is satisfied, so the curvature tensor of the surface vanishes. If a
3-dimensional submanifold x0 = 0 of the surface (48) is considered (ȳI(xi) is its embedding function
to 9-dimensional space), then, using the Gauss equation (it connects 3-dimensional components of
4-dimensional curvature tensor with 3-dimensional curvature tensor and the second fundamental
form of the considered 3-submanifold of Riemannian 4-space, which is equal to zero in the present
case), it can be noticed that its curvature is also equal to zero. One can therefore transform the metric
of the discussed 3-submanifold to the form ḡik = −δik by choosing the coordinates xi. After that,
the metric of 4-surface begins to coincide with (44), which can be easily seen using (1). Therefore,
there are coordinates in which the relations (44) and (48) are simultaneously satisfied, and we will use
such coordinates.

Substituting (48) in (46) at a = 0, we obtain that ū0 = 1. Using this fact in (43), together with (44),
we find that

ū02 − ūiūi = 1 ⇒ ūi = 0 ⇒ ūµ = δ
µ
0 . (49)

According to (45), this leads to the expression for EMT:

τ̄µν = ρ̄τδ
µ
0 δν

0 , (50)

which corresponds to the resting dust embedding matter with density ρ̄τ .
As it was noticed after (48), the quantity ȳI(xi) turns out to be an embedding of flat 3-metric

in a 9-dimensional Euclidean space. Since generic 3-metric is parametrized by six independent
components, such embedding can be parametrized by three arbitrary functions. In a general case
(which, for example, has to be realized if we consider the equations of motion of embedding matter
as a dynamics w.r.t. time x0 and do not perform a fine-tuning of initial values), this embedding has
such a form that there is a quantity ᾱik

a defined by (21) which corresponds to (48), and ᾱik
∅ = 0. Such an

embedding structure corresponds to the notion of free embedding introduced in Reference [42] in the
context of a 3-dimensional manifold, as well as to the notion of spatially free embedding in the context
of a 4-dimensional one. Note that, in the considered limit, when the embedding function has the

form (48), the quantities defined by relations (21) and (35) coincide with each other, so
3
ᾱik

a = ᾱik
a and

ω̄a = δa
0. (51)

Using (44), (48), and (50) in the equations of motion of embedding matter (25), (39), (28), and (29),
one can obtain the only restriction of the considered limit:

∂0ρ̄τ = 0, (52)
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which means that the embedding matter density does not change with time. In this case, ρ̄τ can
arbitrarily depend on spatial coordinates xi; this dependence is determined by the choice of initial
values. It can also be noticed that, according to (40), we have ζ̄ = 1.

5. Equations of Motion in the Nonrelativistic Limit

Now, let us analyze the equations of motion in such regime that the independent variables
are close to their limiting values considered in the previous Section. In this case, the metric has the
form (41). We will additionally assume that ordinary matter is a dust with density ρ and non-relativistic
motion, so its EMT in the leading order has the same form as (50):

Tµν = ρδ
µ
0 δν

0 , (53)

and ∂0ρ is small. Taking into account that EMT of embedding matter τµν is close to (50) and using
harmonic coordinates, as it is usually done in such cases, one can write down linearize Einstein
Equation (4) as follows:

�hµν = −κ(ρ + τ00)δµν. (54)

It leads to the fact that, in the leading order, hµν is diagonal, and their components are proportional to κ,
whereas its non-diagonal elements are of higher order, so, in particular, h0i is small in comparison with
κ. Note also that the small value of ∂0ρ, together with (52), leads to the slow change of gravitational
field, so ∂0hµν is also small in comparison with κ.

If we consider a finite time interval ∆x0 only, then the embedding function ya can be obtained as
a small deviation from its limiting value (48):

ya = ȳa + δya, (55)

where δya is small. Note that the expression (48) gives an explicit expression of the component y0

only, while, for remaining components, it merely means that they are time-independent according
to the condition (47). In the case that is close to the limiting one, this condition is replaced by the
smallness of ∂0yI . Therefore, if the behavior of independent variables is studied not only at finite but
also at large time intervals, in particular, at those intervals, ∆x0 in which inverse is proportional to the
smallness parameter (we will do it below in the transition to the non-relativistic limit), then yI could
start to change noticeably, and it turns out to be impossible to write it down as (55) with a small δyI .
For that reason, we will assume that the only component that can be written as its limiting value plus
a small deviation is y0, and the remaining components are restricted only by the condition that their
derivatives w.r.t. x0 are small:

y0 = x0 + w, yI = yI(x0, xi); ∂0yI(x0, xi)� 1, (56)

where w is small. For finite intervals ∆x0, such formulation of conditions corresponds to the
expression (55) with small δya and, at the same time, allows components yI to change noticeably
at the large (i.e., of the order of inverse values of ∂0yI components) intervals ∆x0. Note that we do
not choose any particular coordinate system when writing the embedding function in the form (56),
so the metric gµν can be defined in any coordinates. This fact was used above (54) when harmonic
coordinates had been chosen.

In the considered equations of motion of embedding matter (namely in (29) and (39)), the quantities

αik
a and

3
αik are present, which are defined by relations (21) and (35). As was noted above (51), in the

limiting case (and hence in the leading approximation, when we consider the deviations from the
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limiting case), these quantities are equal to each other and vanish at a = 0. We will denote their values
in the leading approximations as α̂ik

a , using the following exact definition of it:

α̂ik
a = α̂ki

a , α̂ik
∅ = 0, α̂ik

I ∂myI = 0, α̂ik
I ∂l∂myI =

1
2

(
δi

lδ
k
m + δi

mδk
l

)
, (57)

which is the limit of (21) and (35). Defined as such, the leading approximation of the quantities αik
a and

3
αik

a coincides with time-independent quantity ᾱik
a for the embedding function (48). However, after its

replacement by (56), this coincidence is no longer exact due to the appearance of a slight dependence
of yI on x0. As a result, α̂ik

a can also be slightly time-dependent (by slightness we mean that ∂0α̂ik
a is

small due to the satisfaction of the condition from (56)).
Let us start the analysis of the equations of motion of embedding matter from Equation (39),

which defined a dynamics of embedding function. To do that, let us write down the formula (36) at
a = 0 and b = I using (33):

3
αik

I

(
∂i∂ky0 −

3
Γm

ik∂my0
)
= − 3

gik(∂iy0)∂kyI −ω0ωI , (58)

where we took into account that

ωaωa = 1 (59)

according to (34), (51), and the small value of deviations. It follows from (58) that, with the use
of (41), (51), and (56), in the leading approximation, one can find:

ω I = (∂iw)∂iyI + α̂ik
I ∂i∂kw. (60)

Now, let us find the leading approximation of (39), assuming that κ, as well as w, is small, and we can
neglect higher powers of them. Using (40), (41), (56), and (59), together with the fact that h0i and ∂0hµν

are small in comparison with κ (see below (54)), in such approximation, we obtain

∂0w =
1
2

(
h00 + ω Iω I

)
, (61)

∂0yI = ω I + o(κ), (62)

where the quantity ωI is given bt (60) and has the same order of magnitude as w.
Writing down the remaining dynamical Equations (28) and (29), at the leading order in a similar

manner, we obtain

∂0ρτ = −∂iτ
0i + o(κ), (63)

∂0τ0m = −ρτΓm
00 + ∂l

(
α̂lm

I

(
ρτ α̂ik

I

(
(∂iωL)(∂kωL)− R0i0k

)
+ 2τ0i∂iω

I
))

, (64)

where we denote ρτ ≡ τ00. We used (56), (57), (61), and (62) and took into account that h0i, ∂0hµν ∼ o(κ).
Let us examine the time evolution of independent variables governed by Equations (61)–(64).

Consider the situation when, at the initial moment, the variables w a τ0i (as well as ω I according to (60))
are either vanished or very small. While this condition is satisfied well enough, the contributions at
the r.h.s. of (61) and (64) containing these quantities can be neglected in comparison with remaining
contributions of order κ. The time dependence of the latter can also be neglected, so with these
assumptions, the r.h.s. of (61) and (64) will also be time-independent in the leading order, and w, as well
as τ0i, will increase linearly w.r.t. x0. In a finite time interval ∆x0, they will necessarily reach the order
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of magnitude of κ, but, despite this, the contributions in r.h.s of (61), (64), in which they are present,
will be nevertheless small in comparison with leading contributions of order κ, so the linear increasing
of w and τ0i will be continued. Consequently, according to (62) and (63), the quantities yI and ρτ will
increase quadratically with time x0, i.e., will receive an additive perturbation proportional to x02.

Such trivial (i.e., corresponding to a linear or quadratic time dependence) dynamics would take
place during an arbitrary finite interval of time ∆x0, while the quantities w and τ0i have order of
κ. However, for a time ∆x0 ∼ 1/

√
κ (which is not assumed to be finite anymore, since κ is small),

these quantities would increase to the order
√
κ. After that, it would become impossible to drop

out the contributions at the r.h.s. of Equations (61) and (64), which were neglected earlier. Note also
that, after non-finite time intervals ∆x0, it is no longer possible to assume time independence of the
contributions to the r.h.s. of (61) and (64), that were initially of the order of κ.

Therefore, the dynamics defined by Equations (61)–(64) become nontrivial at time scales of order
∆x0 ∼ 1/

√
κ. In order to analyze this nontrivial dynamics (which can easily be recognized as a

standard non-relativistic one), let us perform a time change, introducing a large quantity c:

x0 = c t, c ∼ 1√
κ

. (65)

One can assume that c is the speed of light; then, taking into account that

κ =
8πG

c2 , (66)

it must be assumed that Newtonian gravitational constant G is a finite quantity, whereas the small
value of κ corresponds to the large value of c according to (66).

Using the fact that ∂0hµν is small in comparison with κ (see below (54)), one can obtain from (54)
that, at the leading order,

hµν =
2ϕ

c2 δµν, (67)

where ϕ is the Newtonian potential corresponding to matter distribution with density ρ + ρτ :

∆ϕ = 4πG(ρ + ρτ). (68)

As it was mentioned above, in the nontrivial regime, the independent variables w and τ0i have order of√
κ ∼ 1/c. Due to this, in order to analyze non-relativistic limit, let us introduce some new quantities

instead of them:

ψ = cw, vi
τ = c

τ0i

ρτ
, (69)

which remain finite at κ → 0, c→ ∞. Let us also introduce

γI = cω I = (∂iψ)∂iyI + α̂ik
I ∂i∂kψ, (70)

instead of ω I , where (60) was used. In terms of these new variables and derivatives w.r.t. new
non-relativistic time t

∂t ≡
∂

∂t
= c∂0 (71)

Equations (61)–(64) can be rewritten up to terms of order 1/c as follows:

∂tψ = ϕ +
1
2

γIγI , (72)
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∂tyI = γI , (73)

∂tρτ = −∂i(ρτvi
τ), (74)

∂t(ρτvm
τ ) = −ρτ∂m ϕ + ∂l

(
ρτ α̂lm

I

(
α̂ik

I

(
(∂iγ

L)(∂kγL) + ∂i∂k ϕ
)
+ 2vi

τ∂iγ
I
))

, (75)

where we used (67), (69), and (70).
The resulting dynamical Equations (72)–(75) describe the motion of the embedding matter in

the non-relativistic limit c → ∞, and, together with (67), (68) (to which the Einstein equations are
reduced in the considered case) and the equations of motion of ordinary matter fully describe the
non-relativistic dynamic of a system. The possibility to construct consistent non-relativistic equations
means, in particular, that non-relativistic approximation, appearing as a result of non-relativistic
character of currents (12) in the ambient space, turns out to be stable: the embedding matter
remains non-relativistic.

The dynamic Equations (72)–(75) need to be supplemented by imposition of the constraint (25)
at the initial moment, which (if (41), (56), and (69) are taken into account), up to terms of order 1/c,
takes the form

(∂iyI)(∂kyI) = δik. (76)

This equation means that, in the non-relativistic limit (we remind that the time conservation of
the constraint is provided by dynamical equations; see below (32)), yI resembles an embedding
function of flat 3-dimensional metric in 9-dimensional ambient space at any moment of time. As we
mentioned above (see the text below (50)), such embedding is parametrized by three arbitrary
functions. Unfortunately, we did not succeed in the construction of an explicit form of such functions.
These functions evolve with time according to the dynamical equation (73), which can be interpreted
as dynamical isometric bending of a 3-dimensional surface with a flat Euclidean metric. It can be
straightforwardly checked that the deformation governed by (73) is indeed isometric bending.

We obtain that the embedding matter in the non-relativistic limit is described by the following
eight parameters:

• three functions which parametrize an embedding function of a flat 3-dimensional Euclidean metric
in a 9-dimensional Euclidean space,

• the quantity ψ (see (69) and (56)),
• the density ρτ of the embedding matter,
• the velocity vi

τ of the embedding matter.

To obtain an equation that describes the velocity vi
τ dynamics, (75) needs to be rewritten using (74). Let

us do that, together with the formulation of this equation in a familiar way of dust matter description,
where it is not just ∂tvm

τ that is present at the l.h.s. of the equation, but rather some combination
resembling an acceleration of a “single particle” of the embedding matter (although we assume that,
in the fundamental theory, such particles do not exist, and all variables describing the embedding
matter are, in fact, gravitational variables in the framework of embedding gravity). As a result,
we obtain:

ρτ(∂t + vi
τ∂i)vm

τ = −ρτ∂m ϕ + ∂l

(
ρτ

[
vl

τvm
τ + α̂lm

I

(
α̂ik

I

(
(∂iγ

L)(∂kγL) + ∂i∂k ϕ
)
+ 2vi

τ∂iγ
I
)])

. (77)

The non-relativistic equations of motion of the embedding matter in the form (72)–(74), (77)
reproduce the ones that were obtained by the more complicated (and less geometrically clear) way
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in Reference [37]. Equation (74) is a usual conservation law of this matter, and (77) defines the force
(per unit volume) acting on its “single particles”. Its first term is a well-known gravitational force
corresponding to Newtonian approximation. The remaining terms can be interpreted as a certain
self-interaction force of the embedding matter, which depend not only on familiar characteristics of
this matter, namely its density ρτ and velocity vi

τ , but also on its additional characteristics ψ and yI ,
in which dynamics are governed by Equations (72) and (73).

6. Embedding Function in the Non-Relativistic Limit

Let us find the approximate expression for the embedding function ya(x) corresponding to the
non-relativistic limit that was found in the previous Section. According to (72) and (73), the quantities ψ

and yI have certain dependence on t = x0/c governed by these equations. Therefore, according to (56)
together with (69), the components of the embedding functions can be written as

y0 = x0 +
1
c

ψ

(
x0

c
, xi
)

, yI = yI
(

x0

c
, xi
)

(78)

(note that, in this notation, the condition (56) is satisfied), where the quantities ψ(t, xi), yI(t, xi) satisfy
the equations that are reduced to (72), (73), and (76) in the limit c → ∞. The limiting forms of these
quantities, that exactly satisfy the mentioned equations, are denoted as ψ̂(t, xi), ŷI(t, xi) in this Section,
so one can write

ψ(t, xi) = ψ̂(t, xi) + δψ(t, xi), (79)

yI(t, xi) = ŷI(t, xi) + δyI(t, xi), (80)

where δψ(t, xi) and δyI(t, xi) are small corrections. According to (76), ŷI(t, xi) at each value of t is an
embedding function of a flat 3-dimensional Euclidean metric in 9-dimensional Euclidean space, so the
corresponding induced metric exactly coincides with δik. Note that an arbitrary perturbation of this
induced metric can be obtained by choosing the embedding function deformation in the form

δyI(t, xi) = ξikα̂Iik. (81)

Indeed, taking (57) into account, in the leading approximation, we obtain

δ
(
(∂iyI)(∂kyI)

)
=
(

∂l ŷI
)

∂m

(
ξikα̂Iik

)
+
(

∂mŷI
)

∂l

(
ξikα̂Iik

)
+ o(ξ) = 2ξlm + o(ξ). (82)

Let us substitute the embedding function (78) (using (79) and (80)) into the induced metric
Formula (1). In all calculations, we will omit terms which are small in comparison with 1/c2, and we
assume that up to this order δψ(t, xi) = 0 and δyI(t, xi) reduces to (81). For the {ik} components of
the induced metric, we, using (82), obtain

gik =
1
c2 (∂iψ)(∂kψ)− (∂iyI)(∂kyI) =

1
c2 (∂iψ̂)(∂kψ̂)− δik − 2ξik + o(ξ). (83)

To match this quantity with (41) (taking (67) into account) up to the desired order,
i.e., with −δik + 2ϕδik/c2, one must take

ξik =
1
c2

(
1
2
(∂iψ̂)(∂kψ̂)− ϕδik

)
. (84)
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For the {0k} components of the induced metric, using (73) and (70), we obtain

g0k =

(
1 +

1
c2 ∂tψ

)
1
c

∂kψ− 1
c
(∂tyI)(∂kyI) =

1
c

∂kψ̂− 1
c
(∂tŷI)(∂k ŷI) = 0, (85)

which corresponds to (67) with the above precision. Lastly, for the {00} component, using (72), (73),
we find

g00 =

(
1 +

1
c2 ∂tψ

)2
− 1

c2 (∂tyI)(∂tyI) = 1 +
2
c2 ∂tψ̂−

1
c2 (∂tŷI)(∂tŷI) = 1 +

2ϕ

c2 , (86)

which also corresponds to (67) with the above precision.
Since it is always possible to make any metric perturbation of the order higher than 1/c2 by

addition of such terms to the embedding function, one can conclude that the embedding function

y0 = x0 +
1
c

ψ̂

(
x0

c
, xi
)
+ o

(
1
c2

)
,

yI = ŷI
(

x0

c
, xi
)
+

1
c2 α̂Iik

(
1
2
(∂iψ̂)(∂kψ̂)− ϕδik

)
+ o

(
1
c2

)
(87)

corresponds to the metric of the non-relativistic limit of embedding gravity obtained in the previous
Section. The approximate expression (87) for embedding function reproduces the one that was found
in Reference [37].

7. Conclusions

Let us briefly summarize the results we obtained. We studied the possibility to explain the
mystery of DM through the transition from GR to embedding gravity, which is a modified gravity
based on a simple string-inspired geometric method. After the reformulation of this theory in the form
of GR with an additional contribution of the embedding matter, we found its equations of motion in
the general case. These equations were reduced to a set of first-order dynamical Equations (28), (29),
and (39) and the constraint (25) that was in involution with them. One can try to explain various effects
in terms of embedding matter by analyzing these equations in different regimes. Such effects could be
related not only to DM (which is the topic of the present work) but also probably to the dark energy
and the inflation.

Since observational discrepancies, which exist in the framework of GR, can be quite well
explained by an assumption that DM is a cold dust matter, we consider the class of solutions of
embedding gravity, which corresponds to the non-relativistic character of motion of the embedding
matter. This class of solutions naturally appears due to the assumption that conserved currents ja

µ

describing the embedding matter are non-relativistic in the bulk (12). The obtained non-relativistic
regime of motion of fictitious embedding matter turns out to be stable in such sense that it remains
non-relativistic during the evolution if the choice of initial values corresponds to the non-relativistic
regime. Especially interesting is the fact that, in the non-relativistic regime, besides usual coupling with
gravity, this embedding matter possesses certain self-interaction, as in the models of Self-Interacting
Dark Matter [11], which could be perspective in the context of solving the core-cusp problem and other
observational problems on the scales of galaxies appearing in the ΛCDM model.

In the present work, we used the method of obtaining non-relativistic equations of motion,
which has a simpler geometric meaning than the one that was used in Reference [37], since from the
start to the end of the calculations, we used 4-dimensional embedding function ya(xµ). It should
be noted that, in the present work, as well as in Reference [37], the choice of the spatial part of an
embedding function is essentially different from the one that was used at the cosmological scales in
the works [33,35], where it has minimal codimension (i.e., the 3-dimensional surface was embedded in
4-dimensional flat bulk). On the contrary, in the present work, we supposed that, for a random choice
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of initial values, this 3-dimensional surface turns out to be “unfolded” in 9-dimensional flat bulk,
which corresponds to the existence of the quantity α̂ik

I defined in (57), so the 4-dimensional embedding
is spatially free [42].

In the non-relativistic limit, the embedding matter is described by eight fields: besides its density
ρτ and velocity vi

τ an additional field ψ is present, along with an embedding function yI of a flat
3-dimensional Euclidean metric in 9-dimensional Euclidean space, in which form is described by
three functions. These four additional degrees of freedom have their own dynamics and affect the
process of self-interaction of the embedding matter. An important role in the embedding matter’s
behavior is played by the initial values of these variables, which correspond to their values at the
beginning of the non-relativistic regime. These values are formed during the preceding relativistic
period, which possibly corresponds to the inflationary era.
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