Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = RcGSTF2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 16534 KiB  
Article
Identification of the GST Gene Family and Functional Analysis of RcGSTF2 Related to Anthocyanin in Rosa chinensis ‘Old Blush’
by Ting Zhang, Han Wu, Yujia Sun, Peiheng Zhang, Lixia Li, Dan Luo and Zhe Wu
Plants 2025, 14(6), 932; https://doi.org/10.3390/plants14060932 - 16 Mar 2025
Viewed by 644
Abstract
The rose (Rosa chinensis), with its rich color variations and elegant form, holds a significant position in the global floriculture industry, where the color of its petals and the content of anthocyanins are crucial for enhancing the plant’s ornamental value and [...] Read more.
The rose (Rosa chinensis), with its rich color variations and elegant form, holds a significant position in the global floriculture industry, where the color of its petals and the content of anthocyanins are crucial for enhancing the plant’s ornamental value and market competitiveness. Nevertheless, the precise roles of the GST gene family in roses, especially regarding their participation in anthocyanin transport and the modulation of petal color, remain poorly elucidated. In the present investigation, we identified 83 rose glutathione S-transferase (GST) genes through whole-genome analysis. The identification and functional analysis of RcGSTF2 were conducted exclusively in the ‘Old Blush’ cultivar of Rosa chinensis. We employed bioinformatics, tissue expression analysis, subcellular localization, and transient expression validation to explore the function of the RcGSTF2 gene in anthocyanin transport and accumulation. We found that RcGSTF2 is closely related to anthocyanin-associated GSTs and demonstrated a conserved domain with high sequence similarity. Molecular docking analysis revealed potential binding modes between RcGSTF2 and cyanidin-3,5-diglucoside, suggesting a role in anthocyanin transport. Subcellular localization indicated that RcGSTF2 is associated with the cell membrane. Overexpression of RcGSTF2 in rose plants significantly increased anthocyanin accumulation, while silencing RcGSTF2 reduced anthocyanin content, highlighting its crucial role in regulating anthocyanin accumulation. This research investigates the functions of the GST gene family in roses, laying the groundwork for developing more colorful and resilient rose cultivars, with the functional analysis of RcGSTF2 being a key contribution to the floriculture industry’s genetic enhancement efforts. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

Back to TopTop