Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = RbHgI3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2914 KiB  
Article
Synthesis, Crystal Structure and Nonlinear Optical Property of RbHgI3
by Yanjun Li, Yuxun Ding, Yaming Li, Hongming Liu, Xianggao Meng, Ye Cong, Jiang Zhang, Xuanke Li, Xingguo Chen and Jingui Qin
Crystals 2017, 7(5), 148; https://doi.org/10.3390/cryst7050148 - 22 May 2017
Cited by 17 | Viewed by 6417
Abstract
Searching for new nonlinear optical (NLO) crystals to be used in the infrared (IR) region is still a challenge. This paper presents the synthesis, crystal structure and properties of a new halide, RbHgI3. Its non-centrosymmetric single crystal can be grown in [...] Read more.
Searching for new nonlinear optical (NLO) crystals to be used in the infrared (IR) region is still a challenge. This paper presents the synthesis, crystal structure and properties of a new halide, RbHgI3. Its non-centrosymmetric single crystal can be grown in solution. In its crystal structure, all the polar [HgI4]2− groups align in such a way that brings a favorable net polarization. The measurement by Kurtz–Perry powder technique indicates that RbHgI3 shows a phase-matchable second harmonic generation (SHG) property seven times stronger than that of KH2PO4 (KDP). RbHgI3 displays excellent transparency in the range of 0.48–25 μm with relatively good thermal stability. The UV absorption implies that this yellow compound’s band gap is about 2.56 eV, close to that of AgGaS2. A preliminary measurement indicates that the laser-induced damage threshold of the crystal is about 28.3 MW/cm2. These preliminary experimental data reveal that RbHgI3 is a new candidate as nonlinear optical material in the infrared region. Full article
Show Figures

Graphical abstract

Back to TopTop