Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = RTNLB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9601 KiB  
Article
Selection and Validation of Reference Genes for Gene Expression Studies in Euonymus japonicus Based on RNA Sequencing
by Wei Guo, Yihui Yang, Bo Ma, Wenbo Wang, Zenghui Hu and Pingsheng Leng
Genes 2024, 15(1), 131; https://doi.org/10.3390/genes15010131 - 21 Jan 2024
Cited by 2 | Viewed by 2262
Abstract
Euonymus japonicus is one of the most low-temperature-tolerant evergreen broad-leaved tree species in the world and is widely used in urban greening. However, there are very few molecular biology studies on its low-temperature tolerance mechanism. So far, no researcher has selected and reported [...] Read more.
Euonymus japonicus is one of the most low-temperature-tolerant evergreen broad-leaved tree species in the world and is widely used in urban greening. However, there are very few molecular biology studies on its low-temperature tolerance mechanism. So far, no researcher has selected and reported on its reference genes. In this study, 21 candidate reference genes (12 traditional housekeeping genes and 9 other genes) were initially selected based on gene expression and coefficient of variation (CV) through RNA-Seq (unpublished data), and qRT-PCR was used to detect the expression levels of candidate reference genes in three different groups of samples (leaves under different temperature stresses, leaves of plants at different growth stages, and different organs). After further evaluating the expression stability of these genes using geNorm, NormFinder, Bestkeeper, and RefFind, the results show that the traditional housekeeping gene eIF5A and the new reference gene RTNLB1 have good stability in the three different groups of samples, so they are reference genes with universality. In addition, we used eIF5A and RTNLB1 as reference genes to calibrate the expression pattern of the target gene EjMAH1, which confirmed this view. This article is the first to select and report on the reference gene of E. japonicus, laying the foundation for its low-temperature tolerance mechanism and other molecular biology research. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

28 pages, 12864 KiB  
Article
Arabidopsis RETICULON-LIKE4 (RTNLB4) Protein Participates in Agrobacterium Infection and VirB2 Peptide-Induced Plant Defense Response
by Fan-Chen Huang and Hau-Hsuan Hwang
Int. J. Mol. Sci. 2020, 21(5), 1722; https://doi.org/10.3390/ijms21051722 - 3 Mar 2020
Cited by 10 | Viewed by 5604
Abstract
Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are [...] Read more.
Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The rtnlb4 mutants were recalcitrant to A. tumefaciens infection, but overexpression of RTNLB4 in transgenic plants resulted in hypersusceptibility to A. tumefaciens transformation, which suggests the involvement of RTNLB4 in A. tumefaciens infection. The expression of defense-related genes, including FRK1, PR1, WRKY22, and WRKY29, were less induced in RTNLB4 overexpression (O/E) transgenic plants after A. tumefaciens elf18 peptide treatment. Pretreatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly, A. tumefaciens VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in RTNLB4 O/E transgenic seedlings. Furthermore, the VirB2 peptides induced FRK1, WRKY22, and WRKY29 gene expression in wild-type seedlings but not efr-1 and bak1 mutants. The induced defense-related gene expression was lower in RTNLB4 O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the A. tumefaciens infection process. Full article
(This article belongs to the Special Issue Plant Innate Immunity 3.0)
Show Figures

Graphical abstract

3 pages, 747 KiB  
Correction
Correction: Huang, F.-C., et al. Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation. Int. J. Mol. Sci. 2018, 19, 638
by Fan-Chen Huang, Bi-Ju Fu, Yin-Tzu Liu, Yao-Ren Chang, Shin-Fei Chi, Pei-Ru Chien, Si-Chi Huang and Hau-Hsuan Hwang
Int. J. Mol. Sci. 2019, 20(3), 664; https://doi.org/10.3390/ijms20030664 - 3 Feb 2019
Cited by 1 | Viewed by 2875
Abstract
The authors would like to make a correction to their published paper [...] Full article
(This article belongs to the Special Issue Plant Innate Immunity 2.0)
Show Figures

Figure 1

21 pages, 3002 KiB  
Article
Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation
by Fan-Chen Huang, Bi-Ju Fu, Yin-Tzu Liu, Yao-Ren Chang, Shin-Fei Chi, Pei-Ru Chien, Si-Chi Huang and Hau-Hsuan Hwang
Int. J. Mol. Sci. 2018, 19(2), 638; https://doi.org/10.3390/ijms19020638 - 24 Feb 2018
Cited by 13 | Viewed by 9176 | Correction
Abstract
Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally [...] Read more.
Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally synthesize auxin and cytokinin, which results in crown gall disease. T-DNA and several virulence (Vir) proteins are secreted through a type IV secretion system (T4SS) composed of T-pilus and a transmembrane protein complex. Three members of Arabidopsis reticulon-like B (RTNLB) proteins, RTNLB1, 2, and 4, interact with VirB2, the major component of T-pilus. Here, we have identified that other RTNLB proteins, RTNLB3 and 8, interact with VirB2 in vitro. Root-based A. tumefaciens transformation assays with Arabidopsis rtnlb3, or rtnlb5-10 single mutants showed that the rtnlb8 mutant was resistant to A. tumefaciens infection. In addition, rtnlb3 and rtnlb8 mutants showed reduced transient transformation efficiency in seedlings. RTNLB3- or 8 overexpression transgenic plants showed increased susceptibility to A. tumefaciens and Pseudomonas syringae infection. RTNLB1-4 and 8 transcript levels differed in roots, rosette leaves, cauline leaves, inflorescence, flowers, and siliques of wild-type plants. Taken together, RTNLB3 and 8 may participate in A. tumefaciens infection but may have different roles in plants. Full article
(This article belongs to the Special Issue Plant Innate Immunity 2.0)
Show Figures

Graphical abstract

Back to TopTop