Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = RING finger protein 4 (RNF4)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1428 KiB  
Article
Upregulation of ABLIM1 Differentiates Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma and Both Colorectal and Pancreatic Adenocarcinoma Liver Metastases
by Tina Draškovič, Branislava Ranković, Nina Zidar and Nina Hauptman
Genes 2024, 15(12), 1545; https://doi.org/10.3390/genes15121545 - 28 Nov 2024
Cited by 1 | Viewed by 1385
Abstract
Background: Altered gene expression in cancers holds great potential to improve the diagnostics and differentiation of primary and metastatic liver cancers. In this study, the expression of the protein-coding genes ring finger protein 135 (RNF135), ephrin-B2 (EFNB2), ring finger [...] Read more.
Background: Altered gene expression in cancers holds great potential to improve the diagnostics and differentiation of primary and metastatic liver cancers. In this study, the expression of the protein-coding genes ring finger protein 135 (RNF135), ephrin-B2 (EFNB2), ring finger protein 125 (RNF125), homeobox-C 4 (HOXC4), actin-binding LIM protein 1 (ABLIM1) and oncostatin M receptor (OSMR) and the long non-coding RNAs (lncRNA) prospero homeobox 1 antisense RNA 1 (PROX1-AS1) and leukemia inhibitory factor receptor antisense RNA 1 (LIFR-AS1) was investigated in hepatocellular carcinoma, cholangiocarcinoma, colorectal liver metastases and pancreatic ductal adenocarcinoma liver metastases. Methods: This study included 149 formalin-fixed, paraffin-embedded samples from 80 patients. After RNA isolation, quantification, reverse transcription and preamplification, real-time qPCR was performed. The gene expression between different groups was calculated relative to the expression of the reference genes using the ∆∆Cq method and statistically analyzed. The expression of the genes was additionally analyzed using the AmiCA and UCSC Xena platforms. Results: In primary cancers, our results showed differential expression between primary tumors and healthy tissues for all the genes and lncRNA examined. Moreover, we found downregulation of RNF135 in hepatocellular carcinoma, downregulation of OSMR in colorectal liver metastases and upregulation of HOXC4 in cholangiocarcinoma compared to primary liver cancers and metastatic cancers. The major finding is the upregulation of ABLIM1 in cholangiocarcinoma compared to hepatocellular carcinoma, colorectal liver metastases, pancreatic ductal adenocarcinoma liver metastases and healthy liver tissue. We propose ABLIM1 as a potential biomarker that differentiates cholangiocarcinoma from other cancers and healthy liver tissue. Conclusions: This study emphasizes the importance of understanding the differences in gene expression between healthy tissues and primary and metastatic cancers and highlights the potential use of altered gene expression as a diagnostic biomarker in these malignancies. Full article
(This article belongs to the Special Issue Genomic Diagnosis of Human Cancers)
Show Figures

Graphical abstract

11 pages, 242 KiB  
Article
Whole Exome Sequencing in a Series of Patients with a Clinical Diagnosis of Tuberous Sclerosis Not Confirmed by Targeted TSC1/TSC2 Sequencing
by Erzsebet Kovesdi, Reka Ripszam, Etelka Postyeni, Emese Beatrix Horvath, Anna Kelemen, Beata Fabos, Viktor Farkas, Kinga Hadzsiev, Katalin Sumegi, Lili Magyari, Pilar Guatibonza Moreno, Peter Bauer and Bela Melegh
Genes 2021, 12(9), 1401; https://doi.org/10.3390/genes12091401 - 10 Sep 2021
Cited by 8 | Viewed by 3557
Abstract
Background: Approximately fifteen percent of patients with tuberous sclerosis complex (TSC) phenotype do not have any genetic disease-causing mutations which could be responsible for the development of TSC. The lack of a proper diagnosis significantly affects the quality of life for these patients [...] Read more.
Background: Approximately fifteen percent of patients with tuberous sclerosis complex (TSC) phenotype do not have any genetic disease-causing mutations which could be responsible for the development of TSC. The lack of a proper diagnosis significantly affects the quality of life for these patients and their families. Methods: The aim of our study was to use Whole Exome Sequencing (WES) in order to identify the genes responsible for the phenotype of nine patients with clinical signs of TSC, but without confirmed tuberous sclerosis complex 1/ tuberous sclerosis complex 2 (TSC1/TSC2) mutations using routine molecular genetic diagnostic tools. Results: We found previously overlooked heterozygous nonsense mutations in TSC1, and a heterozygous intronic variant in TSC2. In one patient, two heterozygous missense variants were found in polycystic kidney and hepatic disease 1 (PKHD1), confirming polycystic kidney disease type 4. A heterozygous missense mutation in solute carrier family 12 member 5 (SLC12A5) was found in one patient, which is linked to cause susceptibility to idiopathic generalized epilepsy type 14. Heterozygous nonsense variant ring finger protein 213 (RNF213) was identified in one patient, which is associated with susceptibility to Moyamoya disease type 2. In the remaining three patients WES could not reveal any variants clinically relevant to the described phenotypes. Conclusion: Patients without appropriate diagnosis due to the lack of sensitivity of the currently used routine diagnostic methods can significantly profit from the wider application of next generation sequencing technologies in order to identify genes and variants responsible for their symptoms. Full article
(This article belongs to the Collection Genotype-Phenotype Study in Disease)
11 pages, 4860 KiB  
Article
The E3 Ubiquitin-Protein Ligase RNF4 Promotes TNF-α-Induced Cell Death Triggered by RIPK1
by Tatsuya Shimada, Yuki Kudoh, Takuya Noguchi, Tomohiro Kagi, Midori Suzuki, Mei Tsuchida, Hiromu Komatsu, Miki Takahashi, Yusuke Hirata and Atsushi Matsuzawa
Int. J. Mol. Sci. 2021, 22(11), 5796; https://doi.org/10.3390/ijms22115796 - 28 May 2021
Cited by 10 | Viewed by 5344
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is a key component of the tumor necrosis factor (TNF) receptor signaling complex that regulates both pro- and anti-apoptotic signaling. The reciprocal functions of RIPK1 in TNF signaling are determined by the state of the posttranslational modifications (PTMs) [...] Read more.
Receptor-interacting protein kinase 1 (RIPK1) is a key component of the tumor necrosis factor (TNF) receptor signaling complex that regulates both pro- and anti-apoptotic signaling. The reciprocal functions of RIPK1 in TNF signaling are determined by the state of the posttranslational modifications (PTMs) of RIPK1. However, the underlying mechanisms associated with the PTMs of RIPK1 are unclear. In this study, we found that RING finger protein 4 (RNF4), a RING finger E3 ubiquitin ligase, is required for the RIPK1 autophosphorylation and subsequent cell death. It has been reported that RNF4 negatively regulates TNF-α-induced activation of the nuclear factor-κB (NF-κB) through downregulation of transforming growth factor β-activated kinase 1 (TAK1) activity, indicating the possibility that RNF4-mediated TAK1 suppression results in enhanced sensitivity to cell death. However, interestingly, RNF4 was needed to induce RIPK1-mediated cell death even in the absence of TAK1, suggesting that RNF4 can promote RIPK1-mediated cell death without suppressing the TAK1 activity. Thus, these observations reveal the existence of a novel mechanism whereby RNF4 promotes the autophosphorylation of RIPK1, which provides a novel insight into the molecular basis for the PTMs of RIPK1. Full article
(This article belongs to the Special Issue Stress Signalling and Cell Death)
Show Figures

Figure 1

Back to TopTop