Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = RESRAD-OFFSITE code

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 16782 KB  
Article
A Novel Approach for Predicting the Mid–Long-Term Radiation Dose in the Case of a Hypothetical STSBO Nuclear Accident for an Operating Nuclear Power Plant
by Rui Ding and Zehua Liu
Atmosphere 2024, 15(11), 1291; https://doi.org/10.3390/atmos15111291 - 28 Oct 2024
Cited by 1 | Viewed by 2188
Abstract
Four severe nuclear accident scenarios have been identified for operating nuclear power plants (ONPPs). However, there is a research gap in predicting the mid–long-term radiation doses for these scenarios. This study aims to address this gap by proposing a novel approach for predicting [...] Read more.
Four severe nuclear accident scenarios have been identified for operating nuclear power plants (ONPPs). However, there is a research gap in predicting the mid–long-term radiation doses for these scenarios. This study aims to address this gap by proposing a novel approach for predicting the mid–long-term radiation dose in the case of a hypothetical short-term station blackout (STSBO) scenario, one of the aforementioned scenarios. Firstly, the Weather Research and Forecasting (WRF) model was coupled with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (WRF-HYSPLIT) model to establish an atmospheric transport and diffusion model for airborne radionuclides, and the regularity of the atmospheric transport and diffusion for the airborne radionuclides was determined. Subsequently, the Residual Radioactive Material Guidelines (RESRAD) OFFSITE (RESRAD-OFFSITE) code was utilized to establish a radiation dose model for predicting the mid–long-term radiation dose resulting from the airborne radionuclides, and the evolution of the mid–long-term radiation dose was analyzed. Finally, the proposed approach was applied to an ONPP, and the results were used to predict the mid–long-term public radiation dose. The results indicated that the total radiation dose would be lower than the dose limit recommended by the International Commission on Radiological Protection (1 mSv/yr) from the second month to the 100th year after the hypothetical STSBO nuclear accident, and the total radiation dose would decrease slowly over time. Recommendations are made for offsite emergency response measures. These research findings can assist ONPPs in analyzing their environmental impacts in the event of an STSBO scenario. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

12 pages, 813 KB  
Article
Impact of Updated OECD/NEA Thermodynamic Database on the Safety Assessment of Radioactive Waste Repository Studied Using RESRAD-OFFSITE Code
by Jun-Yeop Lee, Sang June Park and Seokyoung Ahn
Appl. Sci. 2021, 11(16), 7269; https://doi.org/10.3390/app11167269 - 6 Aug 2021
Cited by 1 | Viewed by 2569
Abstract
A RESRAD-OFFISTE computational code for the safety assessment model of a radioactive waste repository was utilized to evaluate the influence of the updated OECD/NEA thermodynamic database on the safety assessment model in terms of exposure dose. The solubility data as the input parameter [...] Read more.
A RESRAD-OFFISTE computational code for the safety assessment model of a radioactive waste repository was utilized to evaluate the influence of the updated OECD/NEA thermodynamic database on the safety assessment model in terms of exposure dose. The solubility data as the input parameter for the RESRAD-OFFSITE code obtained with two different sets of chemical thermodynamic databases such as JAEA-TDB and amended JAEA-TDB reflecting the updates of the OECD/NEA thermodynamic database were calculated and compared with each other. As a result, almost identical exposure doses were obtained due to the remarkable similarity between the solubility data of various radionuclides for both chemical thermodynamic databases. In contrast, dramatic changes in exposure dose were observed with varying distribution coefficients. Thermodynamic calculations indicated that the aqueous species distribution can be significantly changed by the selection of a chemical thermodynamic database and thus the relevant distribution coefficient can also be influenced as a consequence. Accordingly, the result obtained in the present work indicated that (i) the impact of the updated chemical thermodynamic data was somewhat minor from the viewpoint of the solubility and (ii) the distribution coefficient, which can be sensitively influenced by the predominant chemical species, produced a remarkable change in the exposure dose. This work provided an insight into the precise exposure dose calculation in terms of the reliable estimation of the distribution coefficient by means of a surface complexation model, which can predict the distribution coefficient as a function of groundwater composition coupled with a chemical speciation calculation based on up to date chemical thermodynamic data. Full article
(This article belongs to the Special Issue Nuclear Wastes Management)
Show Figures

Figure 1

16 pages, 4547 KB  
Article
Radiological Dose Assessment of the Landfill Disposal of Consumer Products Containing Naturally Occurring Radioactive Materials in South Korea
by Mercy Nandutu and Juyoul Kim
Appl. Sci. 2021, 11(15), 7172; https://doi.org/10.3390/app11157172 - 3 Aug 2021
Cited by 1 | Viewed by 3984
Abstract
Naturally occurring radioactive materials (NORMs) are long-lived radioactive elements such as uranium, thorium, and potassium, and theirdecay products. They are abundant in natural rocks and minerals. In this study, we conducted a radiological dose assessment of the disposal of consumer products (CPs) containing [...] Read more.
Naturally occurring radioactive materials (NORMs) are long-lived radioactive elements such as uranium, thorium, and potassium, and theirdecay products. They are abundant in natural rocks and minerals. In this study, we conducted a radiological dose assessment of the disposal of consumer products (CPs) containing NORMs at landfills and incinerators in South Korea. Household wastes were categorized as combustible and noncombustible on the basis of activity concentrations (ACs) ranging below and above 1 Bq/g, respectively. Analysis data were obtained from previous literature and the Nuclear Safety and Security Commission (NSSC) of South Korea, and statistical analysis was performed using an interval plot and 95% confidence interval of mean for each category as an input. Using RESRAD computer codes for noncombustible CPs with AC below and above 1 Bq/g, we found out that the dose rate was below and above 1 mSv/y, respectively. The RESRAD-OFFSITE results showed that the dose incurred during the study period for both ranges of AC was all below the public dose limit of 1 mSv/y. NORM and LegacY Site Assessment (NORMALYSA) code was used to validate the result of the RESRAD-ONSITE code, and the results showed that the dose was equal to and above 1 mSv/y for ACs below and above 1 Bq/g, respectively. HotSpot code was used for dose evaluation to offsite residents from incineration of combustible CPs, and the resulting dose was below 1 mSv/y. These findings can be used as a guideline for managing public exposure from landfill sites with varying ACs ranges. Therefore, the competent authority should ensure that criteria and protection measures are established for people who live within a distance of 10 km from incinerators and landfill sites that are contaminated with consumer products containing NORMs. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

11 pages, 2041 KB  
Article
Modelling of Radiological Health Risks from Gold Mine Tailings in Wonderfonteinspruit Catchment Area, South Africa
by Manny Mathuthu, Caspah Kamunda and Morgan Madhuku
Int. J. Environ. Res. Public Health 2016, 13(6), 570; https://doi.org/10.3390/ijerph13060570 - 7 Jun 2016
Cited by 17 | Viewed by 5636
Abstract
Mining is one of the major causes of elevation of naturally-occurring radionuclide material (NORM) concentrations on the Earth’s surface. The aim of this study was to evaluate the human risk associated with exposure to NORMs in soils from mine tailings around a gold [...] Read more.
Mining is one of the major causes of elevation of naturally-occurring radionuclide material (NORM) concentrations on the Earth’s surface. The aim of this study was to evaluate the human risk associated with exposure to NORMs in soils from mine tailings around a gold mine. A broad-energy germanium detector was used to measure activity concentrations of these NORMs in 66 soil samples (56 from five mine tailings and 10 from the control area). The RESidual RADioactivity (RESRAD) OFFSITE modeling program (version 3.1) was then used to estimate the radiation doses and the cancer morbidity risk of uranium-238 (238U), thorium-232 (232Th), and potassium-40 (40K) for a hypothetical resident scenario. According to RESRAD prediction, the maximum total effective dose equivalent (TEDE) during 100 years was found to be 0.0315 mSv/year at year 30, while the maximum total excess cancer morbidity risk for all the pathways was 3.04 × 10−5 at year 15. The US Environmental Protection Agency considers acceptable for regulatory purposes a cancer risk in the range of 10−6 to 10−4. Therefore, results obtained from RESRAD OFFSITE code has shown that the health risk from gold mine tailings is within acceptable levels according to international standards. Full article
Show Figures

Graphical abstract

Back to TopTop