Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Psacalium peltatum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1422 KiB  
Article
Chemoinformatic Analysis of Selected Cacalolides from Psacalium decompositum (A. Gray) H. Rob. & Brettell and Psacalium peltatum (Kunth) Cass. and Their Effects on FcεRI-Dependent Degranulation in Mast Cells
by Jorge Iván Castillo-Arellano, Juan Carlos Gómez-Verjan, Nadia A. Rojano-Vilchis, Myrna Mendoza-Cruz, Manuel Jiménez-Estrada, Héctor E. López-Valdés, Hilda Martínez-Coria, Roger Gutiérrez-Juárez, Claudia González-Espinosa, Ricardo Reyes-Chilpa and Isabel Arrieta-Cruz
Molecules 2018, 23(12), 3367; https://doi.org/10.3390/molecules23123367 - 19 Dec 2018
Cited by 6 | Viewed by 4559
Abstract
Cacalolides are a kind of sesquiterpenoids natural compounds synthesized by Psacalium decompositum (A. Gray) H. Rob. & Brettell or Psacalium peltatum (Kunth) Cass. Antioxidant and hypoglycemic effects have been found for cacalolides such as cacalol, cacalone or maturine, however, their effects on inflammatory [...] Read more.
Cacalolides are a kind of sesquiterpenoids natural compounds synthesized by Psacalium decompositum (A. Gray) H. Rob. & Brettell or Psacalium peltatum (Kunth) Cass. Antioxidant and hypoglycemic effects have been found for cacalolides such as cacalol, cacalone or maturine, however, their effects on inflammatory processes are still largely unclear. The main aim of this study was to investigate the biological activities of secondary metabolites from P. decompositum and P. peltatum through two approaches: (1) chemoinformatic and toxicoinformatic analysis based on ethnopharmacologic background; and (2) the evaluation of their potential anti-inflammatory/anti-allergic effects in bone marrow-derived mast cells by IgE/antigen complexes. The bioinformatics properties of the compounds: cacalol; cacalone; cacalol acetate and maturin acetate were evaluated through Osiris DataWarrior software and Molinspiration and PROTOX server. In vitro studies were performed to test the ability of these four compounds to inhibit antigen-dependent degranulation and intracellular calcium mobilization, as well as the production of reactive oxygen species in bone marrow-derived mast cells. Our findings showed that cacalol displayed better bioinformatics properties, also exhibited a potent inhibitory activity on IgE/antigen-dependent degranulation and significantly reduced the intracellular calcium mobilization on mast cells. These data suggested that cacalol could reduce the negative effects of the mast cell-dependent inflammatory process. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

Back to TopTop