Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Podarcis lilfordi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3036 KB  
Article
Es Colomer, a Unique Population of the Lilford’s Wall Lizard, Podarcis lilfordi (Squamata: Lacertidae)
by Ana Pérez-Cembranos and Valentín Pérez-Mellado
Animals 2025, 15(8), 1093; https://doi.org/10.3390/ani15081093 - 10 Apr 2025
Viewed by 1194
Abstract
Es Colomer Island is occupied by a melanistic population of the Lilford’s Wall lizard, Podarcis lilfordi. Adult males are larger than females, with longer tails, and higher values of body mass, pileus length, head heigh, head width, hindleg length and number of [...] Read more.
Es Colomer Island is occupied by a melanistic population of the Lilford’s Wall lizard, Podarcis lilfordi. Adult males are larger than females, with longer tails, and higher values of body mass, pileus length, head heigh, head width, hindleg length and number of dorsal scales. Adult sex ratio is balanced or slightly skewed towards males. At the summit of the islet, body condition was found to be significantly better than in almost vertical slopes. We found a higher proportion of digit amputations in adult males, probably due to frequent male–male interactions, promoted by high lizard density. During a 2024 survey, we recorded the highest known density of the Lilford’s Wall lizard. The prevalence of mites and blood parasites was 100%. The frequent intraspecific interactions, shown by the proportion of males with digit amputations, could be the source of the higher prevalence and susceptibility to blood parasite infections. The diet of lizards from Colomer is omnivorous, including several prey groups, as well as carcass remains from birds and mammals, and even conspecifics. Lizards from Colomer are an excellent example of the effects of extreme environmental conditions, with high population densities, strong intraspecific competition, the widespread presence of external and blood parasites, the extensive use of the scarce resources, and the opportunistic use of unpredictable resources in masting years, such as the fruits of the joint pine. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

8 pages, 251 KB  
Review
Vertebrate Pollination of Angiosperms in the Mediterranean Area: A Review
by Benito Valdés
Plants 2024, 13(6), 895; https://doi.org/10.3390/plants13060895 - 20 Mar 2024
Cited by 1 | Viewed by 1930
Abstract
For a long time, it was considered that entomogamy was the only pollination mechanism in the Mediterranean area. However, data recorded in this review prove that ornithogamy and saurogamy also take place. With the exception of the nectarivorous Cinnyris osea (Nectariniidae) which pollinates [...] Read more.
For a long time, it was considered that entomogamy was the only pollination mechanism in the Mediterranean area. However, data recorded in this review prove that ornithogamy and saurogamy also take place. With the exception of the nectarivorous Cinnyris osea (Nectariniidae) which pollinates the mistletoe Picosepalus acaciae in Israel, all birds responsible for the pollination of several plant species in this area are primarily insectivorous, sedentary, or migrating passerine birds, particularly Sylvia atricapilla, S. melanocephala, Phylloscopus collibita and Parus caeruleus. They contribute, together with insects, to the pollination of Anagyris foetida, three species of Scrophularia with big flowers, Rhamnus alaternus, Brassica oleracea, and some other plants. The lacertid lizard Podarcis lilfordi acts as a pollinating agent on several W Mediterranean islands, where it effectively pollinates Euphorbia dendroides, Cneorum tricocum, and presumably Rosmarinus officinalis and Chrithmum maritimum. The flowers of some other plant species are visited by birds or by Podarcis species in the Mediterranean area, where they could also contribute to their pollination. Full article
12 pages, 2110 KB  
Article
Assessing the Role of Lizards as Potential Pollinators of an Insular Plant Community and Its Intraspecific Variation
by Víctor Romero-Egea, Cristina Robles, Anna Traveset, Laura Del Rio and Sandra Hervías-Parejo
Animals 2023, 13(6), 1122; https://doi.org/10.3390/ani13061122 - 22 Mar 2023
Cited by 7 | Viewed by 4017
Abstract
The role of lizards as potential pollinators on islands has been documented for either one or a few plants in different parts of the world, but it has never been assessed for an entire plant community. Here, we quantified interaction rate by lizards [...] Read more.
The role of lizards as potential pollinators on islands has been documented for either one or a few plants in different parts of the world, but it has never been assessed for an entire plant community. Here, we quantified interaction rate by lizards and evaluated intraspecific differences in the use of flowers on Cabrera Gran (Cabrera archipelago, Balearic Islands) by means of visual observations, automated cameras and the analysis of pollen grain samples. Overall, we recorded interactions of the Balearic wall lizard (Podarcis lilfordi) with flowers of 44 plant species, 72.7% of which were unknown to date. Although florivory occurs in some of these species (35%), the majority of visits were legitimate (65%); in addition, we found intraspecific differences in the interactions related to the sex and age of lizards. Our findings support the role of Balearic wall lizards as potential pollinators across the entire plant community, and their contribution to particular plant species, for instance the endangered Cistus heterophyllus carthaginensis. This study also documents the first record of another sympatric lizard (Tarentola mauritanica) visiting flowers and contributes to the few existing records of flower interactions involving geckos in the Paleartic ecozone. Full article
(This article belongs to the Special Issue Lizard Evolutionary Ecology in Islands)
Show Figures

Figure 1

22 pages, 3673 KB  
Article
Long-Term Seed Dispersal within an Asymmetric Lizard-Plant Interaction
by Ana Pérez-Cembranos and Valentín Pérez-Mellado
Animals 2023, 13(6), 973; https://doi.org/10.3390/ani13060973 - 8 Mar 2023
Cited by 1 | Viewed by 3008
Abstract
During the last 24 years, the mutualistic interaction between the dead horse arum, Helicodiceros muscivorus, and the Balearic lizard, Podarcis lilfordi, was studied on Aire Island (Balearic Islands, Spain). From a small population of a hundred plants, the dead horse arum [...] Read more.
During the last 24 years, the mutualistic interaction between the dead horse arum, Helicodiceros muscivorus, and the Balearic lizard, Podarcis lilfordi, was studied on Aire Island (Balearic Islands, Spain). From a small population of a hundred plants, the dead horse arum expanded extraordinarily throughout the island, reaching the highest known densities of the species and occupying areas of the island where it was not previously present. The current abundance of plants is a direct effect of the frugivorous activity of the Balearic lizard, which is the main, if not the only, effective seed disperser of the plant on Aire Island. However, abiotic factors predominated over biotic factors in driving abundance of plants. Over the years, plant densities varied significantly depending on the aridity of the island, with higher densities recorded in drier years. Lizards’ frugivorous activity and dispersal intensity was inversely correlated with annual rainfall. We found higher dispersal intensity in years with lower rainfall. We propose that the years of lower rainfall are those in which there is a lower prey availability. In such years, lizards compensate the shortage of other trophic resources with a more intense consumption of dead horse arum fruits. The mutualistic interaction is therefore asymmetric, since there is a greater influence of the frugivorous activity of the lizards on the plants than of the plants on lizards. It is, in short, a system chronically out of balance. Full article
(This article belongs to the Special Issue Lizard Evolutionary Ecology in Islands)
Show Figures

Figure 1

23 pages, 1203 KB  
Article
Diet of the Insular Lizard, Podarcis lilfordi (Günther, 1874): Complementary Morphological and Molecular Approaches
by Iris Alemany, Ana Pérez-Cembranos, José A. Castro, Antònia Picornell, Valentín Pérez-Mellado and Cori Ramon
Animals 2023, 13(3), 507; https://doi.org/10.3390/ani13030507 - 1 Feb 2023
Cited by 2 | Viewed by 4032
Abstract
The diets of insular lizards are extremely varied, depending on the different environmental characteristics of each island population. This is particularly evident in the case of the populations of small coastal islets of the Balearic Islands, where the Balearic lizard, Podarcis lilfordi, [...] Read more.
The diets of insular lizards are extremely varied, depending on the different environmental characteristics of each island population. This is particularly evident in the case of the populations of small coastal islets of the Balearic Islands, where the Balearic lizard, Podarcis lilfordi, is found. The study of trophic ecology carried out by means of traditional tools, such as morphological analysis of feces, has made it possible to detect numerous prey and nutritional elements. However, these methods are clearly insufficient, as some rare groups are not detected. It is also difficult to identify remains of marine subsidies or of foods contributed to these small islands by other predators, such as seabirds. The current study demonstrates the advantages of combining morphological diet analysis with the molecular study of individual feces samples obtained from the same populations. We obtained a greater diversity of prey groups using the combined methodologies, with each method identifying prey items that were not detected using the other method. Particularly, the study of diets at the molecular level identified plant species consumed by lizards that were, occasionally, not identified in morphological analyses. Conversely, the traditional morphological study of an equivalent number of fecal samples allowed for the identification of several prey groups that had not been detected in the molecular study. From this viewpoint, the advantages and disadvantages of each methodology are discussed. Full article
(This article belongs to the Special Issue Lizard Evolutionary Ecology in Islands)
Show Figures

Figure 1

Back to TopTop