Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Physcia millegrana

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1439 KiB  
Article
Anti-cancer Evaluation of Depsides Isolated from Indonesian Folious Lichens: Physcia millegrana, Parmelia dilatata and Parmelia aurulenta
by Ari Satia Nugraha, Tinton Agung Laksono, Lilla Nur Firli, Chintya Permata Zahky Sukrisno Putri, Dwi Koko Pratoko, Zulfikar Zulfikar, Ludmilla Fitri Untari, Hendris Wongso, Jacob M. Lambert, Carolyn T. Dillon and Paul A. Keller
Biomolecules 2020, 10(10), 1420; https://doi.org/10.3390/biom10101420 - 8 Oct 2020
Cited by 13 | Viewed by 4434
Abstract
Cancer is a serious health burden on global societies. The discovery and development of new anti-cancer therapies remains a challenging objective. Although it has been shown that lichen secondary metabolites may be potent sources for new anti-cancer agents, the Indonesian- grown folious lichens, [...] Read more.
Cancer is a serious health burden on global societies. The discovery and development of new anti-cancer therapies remains a challenging objective. Although it has been shown that lichen secondary metabolites may be potent sources for new anti-cancer agents, the Indonesian- grown folious lichens, Physcia millegrana, Parmelia dilatata and Parmeila aurulenta, have not yet been explored. In this study exhaustive preparative high-performance liquid chromatography was employed to isolate the lichen constituents with spectroscopic and spectrometric protocols identifying nine depsides 917, including the new methyl 4-formyl-2,3-dihydroxy-6-methylbenzoate 13. The cytotoxicity of the depsides towards cancer cells was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results indicated lowest toxicity of the depsides towards human A549 lung cancer cells. Importantly, the di-depsides (11, 12 and 17) showed greatest toxicity, indicating that these structures are biologically more active than the mono-depsides against the HepG2 liver cancer, A549 lung cancer and HL-60 leukemia cell lines. Full article
Show Figures

Graphical abstract

Back to TopTop