Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Phialocephala fortinii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3014 KiB  
Article
The Role of Phialocephala fortinii in Improving Plants’ Phosphorus Nutrition: New Puzzle Pieces
by Vyacheslav S. Mikheev, Irina V. Struchkova, Maria N. Ageyeva, Anna A. Brilkina and Ekaterina V. Berezina
J. Fungi 2022, 8(11), 1225; https://doi.org/10.3390/jof8111225 - 21 Nov 2022
Cited by 14 | Viewed by 3423
Abstract
Plants’ mineral nutrition in acidic soils can be facilitated by phosphate solubilizing fungi inhabiting the root systems of these plants. We attempt to find dark septate endophyte (DSE) isolates in the roots of wild-heather plants, which are capable of improving plants’ phosphorus nutrition [...] Read more.
Plants’ mineral nutrition in acidic soils can be facilitated by phosphate solubilizing fungi inhabiting the root systems of these plants. We attempt to find dark septate endophyte (DSE) isolates in the roots of wild-heather plants, which are capable of improving plants’ phosphorus nutrition levels. Bright-field and confocal laser scanning microscopy were used for the visualization of endophytes. A model system of co-cultivation with Vaccinium macrocarpon Ait. was used to study a fungal isolate’s ability to supply plants with phosphorus. Fungal phytase activity and phosphorus content in plants were estimated spectrophotometrically. In V. vitis-idaea L. roots, we obtained a Phialocephala fortinii Wang, Wilcox DSE2 isolate with acid phytase activity (maximum 6.91 ± 0.17 U on 21st day of cultivation on potato-dextrose broth medium) and the ability to accumulate polyphosphates in hyphae cells. The ability of the isolate to increase both phosphorus accumulation and biomass in V. macrocarpon is also shown. The data obtained for the same isolate, as puzzle pieces put together, indicate the possible mediation of P. fortinii DSE2 isolate in the process of phosphorus intake from inorganic soil reserves to plants. Full article
Show Figures

Figure 1

12 pages, 502 KiB  
Article
Investigating Host Preference of Root Endophytes of Three European Tree Species, with a Focus on Members of the Phialocephala fortiniiAcephala applanata Species Complex (PAC)
by Sophie Stroheker, Vivanne Dubach, Irina Vögtli and Thomas N. Sieber
J. Fungi 2021, 7(4), 317; https://doi.org/10.3390/jof7040317 - 19 Apr 2021
Cited by 14 | Viewed by 3073
Abstract
Host preference of root endophytes of the three European tree species of Norway spruce (Picea abies), common ash (Fraxinus excelsior), and sycamore maple (Acer pseudoplatanus) were investigated in two forest stands near Zurich, Switzerland. The focus was [...] Read more.
Host preference of root endophytes of the three European tree species of Norway spruce (Picea abies), common ash (Fraxinus excelsior), and sycamore maple (Acer pseudoplatanus) were investigated in two forest stands near Zurich, Switzerland. The focus was placed on members of the Phialocephala fortinii s.l. (sensu lato)—Acephala applanata species complex (PAC), as well as other dark septate endopyhtes (DSE). PAC species were identified based on 13 microsatellite loci. Eleven PAC species were found, with Phialocephala helvetica, P. europaea being the most frequent. All but cryptic species 12 (CSP12) preferred Norway spruce as a host. Though very rare in general, CSP12 was most frequently isolated from maple roots. Regarding the abundant PAC species, P. helvetica and P. europaea, the preference of spruce as a host was least pronounced in P. europaea, as it was also often isolated from ash and maple. It is the first record of PAC found on common ash (Fraxinus excelsior). Cadophora orchidicola, a close relative of PAC, has frequently been isolated from ash. Various species of the Nectriaceae (Cylindrocarpon spp.) have often been isolated, particularly from maple roots. By comparison, Pezicula spp. (Cryptosporiopsis spp.) was found to be abundant on all three hosts. Phomopsis phaseoli exhibits a clear preference for spruce. Full article
(This article belongs to the Special Issue Fungal Endophytes in Agriculture and Ecosystems)
Show Figures

Figure 1

12 pages, 2919 KiB  
Article
Ectomycorrhizal Community on Norway Spruce Seedlings Following Bark Beetle Infestation
by Petra Veselá, Martina Vašutová, Karolína Hofmannová, Magda Edwards-Jonášová and Pavel Cudlín
Forests 2019, 10(9), 740; https://doi.org/10.3390/f10090740 - 28 Aug 2019
Cited by 10 | Viewed by 3109
Abstract
Ectomycorrhizal (ECM) fungi importantly influence seedling growth, nutrition, and survival and create an extensive mycelial network interconnecting tree species and enabling resource redistribution. Due to their symbiotic relationship with trees, they are impacted by forest disturbances, which are of increasing relevance due to [...] Read more.
Ectomycorrhizal (ECM) fungi importantly influence seedling growth, nutrition, and survival and create an extensive mycelial network interconnecting tree species and enabling resource redistribution. Due to their symbiotic relationship with trees, they are impacted by forest disturbances, which are of increasing relevance due to climate change. The effect of disturbance on seedling colonization and their morphology is still largely unknown. Seedling growth parameters and the ECM fungal assemblage on the roots of Norway spruce (Picea abies (L.) H. Karst.) seedlings were assessed in mature spruce forests attacked and destroyed by bark beetle and in a mature non-attacked forest as a reference. We did not detect significant differences in number of ECM species on seedling roots among forest types, but ECM species composition changed; Tylospora fibrillosa (Burt) Donk, Meliniomyces variabilis Hambl. & Sigler, and Phialocephala fortinii C.J.K. Wang & H.E. Wilcox were characteristic species in the forest destroyed by bark beetle, whereas Lactarius, Cortinarius, and Russula were in the mature forest. Forest type further significantly influenced the height, root length, and root collar thickness of seedlings and the proportion of exploration types of mycorrhizae. Full article
(This article belongs to the Special Issue Ecto- and Endomycorrhizal Relationships in Forest Trees)
Show Figures

Figure 1

23 pages, 1278 KiB  
Article
Metabolic Profiling of Water-Soluble Compounds from the Extracts of Dark Septate Endophytic Fungi (DSE) Isolated from Scots Pine (Pinus sylvestris L.) Seedlings Using UPLC–Orbitrap–MS
by Jenni Tienaho, Maarit Karonen, Riina Muilu–Mäkelä, Kristiina Wähälä, Eduardo Leon Denegri, Robert Franzén, Matti Karp, Ville Santala and Tytti Sarjala
Molecules 2019, 24(12), 2330; https://doi.org/10.3390/molecules24122330 - 25 Jun 2019
Cited by 25 | Viewed by 5636 | Correction
Abstract
Endophytes are microorganisms living inside plant hosts and are known to be beneficial for the host plant vitality. In this study, we isolated three endophytic fungus species from the roots of Scots pine seedlings growing on Finnish drained peatland setting. The isolated fungi [...] Read more.
Endophytes are microorganisms living inside plant hosts and are known to be beneficial for the host plant vitality. In this study, we isolated three endophytic fungus species from the roots of Scots pine seedlings growing on Finnish drained peatland setting. The isolated fungi belonged to dark septate endophytes (DSE). The metabolic profiles of the hot water extracts of the fungi were investigated using Ultrahigh Performance Liquid Chromatography with Diode Array Detection and Electron Spray Ionization source Mass Spectrometry with Orbitrap analyzer (UPLC–DAD–ESI–MS–Orbitrap). Out of 318 metabolites, we were able to identify 220, of which a majority was amino acids and peptides. Additionally, opine amino acids, amino acid quinones, Amadori compounds, cholines, nucleobases, nucleosides, nucleotides, siderophores, sugars, sugar alcohols and disaccharides were found, as well as other previously reported metabolites from plants or endophytes. Some differences of the metabolic profiles, regarding the amount and identity of the found metabolites, were observed even though the fungi were isolated from the same host. Many of the discovered metabolites have been described possessing biological activities and properties, which may make a favorable contribution to the host plant nutrient availability or abiotic and biotic stress tolerance. Full article
Show Figures

Graphical abstract

13 pages, 1797 KiB  
Article
Potential of the Endophytic Fungus Phialocephala fortinii Rac56 Found in Rhodiola Plants to Produce Salidroside and p-Tyrosol
by Jinlong Cui, Tingting Guo, Jianbin Chao, Mengliang Wang and Junhong Wang
Molecules 2016, 21(4), 502; https://doi.org/10.3390/molecules21040502 - 16 Apr 2016
Cited by 37 | Viewed by 9129
Abstract
2-(4-Hydroxyphenyl)ehyl-β-d-glucopyranoside (salidroside) and 4-(2-hydroxyethyl)phenol (p-tyrosol) are famous food and medicine additives originally derived from alpine Rhodiola plants. Salidroside or p-tyrosol production by the endophytic fungus Rac56 (Phialocephala fortinii) was confirmed by UPLC/Q-TOF-MS and 1H-NMR. The [...] Read more.
2-(4-Hydroxyphenyl)ehyl-β-d-glucopyranoside (salidroside) and 4-(2-hydroxyethyl)phenol (p-tyrosol) are famous food and medicine additives originally derived from alpine Rhodiola plants. Salidroside or p-tyrosol production by the endophytic fungus Rac56 (Phialocephala fortinii) was confirmed by UPLC/Q-TOF-MS and 1H-NMR. The fermentation conditions were optimized by orthogonal design using data processing system software. The broth fermentation results showed that salidroside and p-tyrosol extraction yields from Rac56 were stable and reached 1.729 ± 0.06 mg and 1.990 ± 0.05 mg per mL of culture medium, respectively. The optimal conditions for salidroside and p-tyrosol production in fermentation culture of Rac56 were determined to be 25 °C, pH values of 7 and 5, Czapek-Dox culture medium volumes of 150 mL and 50 mL in 250 mL flasks, rotation speeds of 100× g and 200× g, and fermentation durations of 7 and 15 days, respectively. Under these optimal conditions, stable yields of 2.339 ± 0.1093 mg and 2.002 ± 0.0009 mg per mL of culture medium of salidroside and p-tyrosol, respectively, were obtained, indicating that the P. fortinii Rac56 strain is a promising source of these compounds. Full article
(This article belongs to the Section Metabolites)
Show Figures

Graphical abstract

Back to TopTop