Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = PgASADH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7480 KiB  
Article
Crystal Structure of Aspartate Semialdehyde Dehydrogenase from Porphyromonas gingivalis
by Jisub Hwang, Hackwon Do, Youn-Soo Shim and Jun Hyuck Lee
Crystals 2023, 13(8), 1274; https://doi.org/10.3390/cryst13081274 - 18 Aug 2023
Cited by 1 | Viewed by 1670
Abstract
Aspartate semialdehyde dehydrogenase (ASADH) catalyzes the biosynthesis of several essential amino acids, including lysine, methionine, and threonine, and bacterial cell components. Thus, ASADH is a crucial target for developing new antimicrobial agents that can potentially disrupt the biosynthesis of essential amino acids, thereby [...] Read more.
Aspartate semialdehyde dehydrogenase (ASADH) catalyzes the biosynthesis of several essential amino acids, including lysine, methionine, and threonine, and bacterial cell components. Thus, ASADH is a crucial target for developing new antimicrobial agents that can potentially disrupt the biosynthesis of essential amino acids, thereby inhibiting the growth of pathogens. Herein, the crystal structures of ASADH obtained from Porphyromonas gingivalis (PgASADH, UniProtKB code A0A1R4DY25) were determined in apo- and adenosine-2′-5′-diphosphate (2′,5′-ADP)-bound complex forms at a resolution of 1.73 Å. The apo- and 2′,5′-ADP-complexed crystals of PgASADH belonged to the space groups of I212121 and C2221, respectively. Analytical size-exclusion chromatography showed a stable PgASADH dimer in a solution. Clustering analysis and structural comparison studies performed on PgASADH and previously known ASADHs revealed that ASADHs, including PgASADH, can be classified into three types depending on sequential and structural differences at the α-helical subdomain region. These findings provide valuable insights into developing structure-based species-specific new antibacterial drugs against the oral pathogen P. gingivalis. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

Back to TopTop