Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Pb-CATH4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1998 KB  
Article
Characterisation of Antiviral Activity of Cathelicidins from Naked Mole Rat and Python bivittatus on Human Herpes Simplex Virus 1
by Alexia Damour, Magali Garcia, Hye-Sun Cho, Andy Larivière, Nicolas Lévêque, Chankyu Park and Charles Bodet
Pharmaceuticals 2021, 14(8), 715; https://doi.org/10.3390/ph14080715 - 24 Jul 2021
Cited by 4 | Viewed by 3254
Abstract
Hg-CATH and Pb-CATH4 are cathelicidins from Heterocephalus glaber and Python bivittatus that have been previously identified as potent antibacterial peptides. However, their antiviral properties were not previously investigated. In this study, their activity against the herpes simplex virus (HSV)-1 was evaluated during primary [...] Read more.
Hg-CATH and Pb-CATH4 are cathelicidins from Heterocephalus glaber and Python bivittatus that have been previously identified as potent antibacterial peptides. However, their antiviral properties were not previously investigated. In this study, their activity against the herpes simplex virus (HSV)-1 was evaluated during primary human keratinocyte infection. Both of them significantly reduced HSV-1 DNA replication and production of infectious viral particles in keratinocytes at noncytotoxic concentrations, with the stronger activity of Pb-CATH4. These peptides did not show direct virucidal activity and did not exhibit significant immunomodulatory properties, except for Pb-CATH4, which exerted a moderate proinflammatory action. All in all, our results suggest that Hg-CATH and Pb-CATH4 could be potent candidates for the development of new therapies against HSV-1. Full article
(This article belongs to the Special Issue Antiviral Drugs 2021)
Show Figures

Figure 1

24 pages, 8325 KB  
Article
Geochronology, Geochemistry, and Geodynamic Relationship of the Mafic Dykes and Granites in the Qianlishan Complex, South China
by Zhi-Feng Yu, Qi-Ming Peng, Zheng Zhao, Ping-An Wang, Ying Xia, Yu-Qi Wang and Hao Wang
Minerals 2020, 10(12), 1069; https://doi.org/10.3390/min10121069 - 29 Nov 2020
Cited by 6 | Viewed by 3489
Abstract
The Qianlishan complex, located in Hunan Province of South China, is closely associated with intense W-dominated polymetallic mineralization. The Qianlishan complex is composed of three phases: the main-phase porphyritic and equigranular granites, granite porphyry, and mafic dykes. Geochronologically, the zircon U-Pb dating results [...] Read more.
The Qianlishan complex, located in Hunan Province of South China, is closely associated with intense W-dominated polymetallic mineralization. The Qianlishan complex is composed of three phases: the main-phase porphyritic and equigranular granites, granite porphyry, and mafic dykes. Geochronologically, the zircon U-Pb dating results show that the porphyritic and equigranular granites have ages of approximately 159 and 158 Ma, respectively, similar to those of mafic dykes (approximately 158 Ma), while the granite porphyry was formed later at approximately 145 Ma. Geochemically, the mafic dykes are characterized by calc-alkaline high-Mg andesite (HMA) with high MgO, TiO2, Mg#, and CA/TH index. They exhibit significantly depleted εNd(t) and εHf(t) with high Ba/La, La/Nb, and (La/Yb)N, indicating that they formed from mixing melts of depleted asthenospheric mantle and metasomatized subcontinental lithospheric mantle (SCLM). The main-phase granites are peraluminous and are characterized by high SiO2, low (La/Yb)N ratios, and relative depletion in Ba, Sr, Ti, and Eu. They also display negative correlations between La, Ce, Y, and Rb contents, suggesting that they are highly fractionated S-type granites. Furthermore, they show high εNd(t) and εHf(t), CaO/Na2O ratios, HREE, and Y contents, indicating that they were produced by parental melting of ancient basement mixed with mantle-derived components. In contrast, the granite porphyry shows A-type signature granites, with higher εNd(t) and εHf(t) and CaO/Na2O ratios than the main-phase granites but similar Zr/Nb and Zr/Hf ratios to the mafic dykes, suggesting that they are the products of partial melting of a hybrid source with ancient basement and the mafic dykes. We thus infer that the slab roll-back led to generation of Qianlishan back-arc basalt and HMA and further triggered the formation of the Qianlishan granite. Full article
Show Figures

Figure 1

Back to TopTop