Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Paradendryphiella salina

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2769 KiB  
Article
Specificities and Synergistic Actions of Novel PL8 and PL7 Alginate Lyases from the Marine Fungus Paradendryphiella salina
by Bo Pilgaard, Marlene Vuillemin, Jesper Holck, Casper Wilkens and Anne S. Meyer
J. Fungi 2021, 7(2), 80; https://doi.org/10.3390/jof7020080 - 25 Jan 2021
Cited by 43 | Viewed by 4736
Abstract
Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.2.x), categorized as polysaccharide lyases (PLs) belonging to 12 different PL families. Until now, the vast majority of the [...] Read more.
Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.2.x), categorized as polysaccharide lyases (PLs) belonging to 12 different PL families. Until now, the vast majority of the alginate lyases have been found in bacteria. We report here the first extensive characterization of four alginate lyases from a marine fungus, the ascomycete Paradendryphiella salina, a known saprophyte of seaweeds. We have identified four polysaccharide lyase encoding genes bioinformatically in P. salina, one PL8 (PsMan8A), and three PL7 alginate lyases (PsAlg7A, -B, and -C). PsMan8A was demonstrated to exert exo-action on polymannuronic acid, and no action on alginate, indicating that this enzyme is most likely an exo-acting polymannuronic acid specific lyase. This enzyme is the first alginate lyase assigned to PL8 and polymannuronic acid thus represents a new substrate specificity in this family. The PL7 lyases (PsAlg7A, -B, and -C) were found to be endo-acting alginate lyases with different activity optima, substrate affinities, and product profiles. PsAlg7A and PsMan8A showed a clear synergistic action for the complete depolymerization of polyM at pH 5. PsAlg7A depolymerized polyM to mainly DP5 and DP3 oligomers and PsMan8A to dimers and monosaccharides. PsAlg7B and PsAlg7C showed substrate affinities towards both polyM and polyG at pH 8, depolymerizing both substrates to DP9-DP2 oligomers. The findings elucidate how P. salina accomplishes alginate depolymerization and provide insight into an efficient synergistic cooperation that may provide a new foundation for enzyme selection for alginate degradation in seaweed bioprocessing. Full article
(This article belongs to the Special Issue Exploiting Fungal Solutions for Today's Challenges)
Show Figures

Figure 1

13 pages, 802 KiB  
Article
Laminariales Host Does Impact Lipid Temperature Trajectories of the Fungal Endophyte Paradendryphiella salina (Sutherland.)
by Marine Vallet, Tarik Meziane, Najet Thiney, Soizic Prado and Cédric Hubas
Mar. Drugs 2020, 18(8), 379; https://doi.org/10.3390/md18080379 - 22 Jul 2020
Cited by 4 | Viewed by 3197
Abstract
Kelps are colonized by a wide range of microbial symbionts. Among them, endophytic fungi remain poorly studied, but recent studies evidenced yet their high diversity and their central role in algal defense against various pathogens. Thus, studying the metabolic expressions of kelp endophytes [...] Read more.
Kelps are colonized by a wide range of microbial symbionts. Among them, endophytic fungi remain poorly studied, but recent studies evidenced yet their high diversity and their central role in algal defense against various pathogens. Thus, studying the metabolic expressions of kelp endophytes under different conditions is important to have a better understanding of their impacts on host performance. In this context, fatty acid composition is essential to a given algae fitness and of interest to food web studies either to measure its nutritional quality or to infer about its contribution to consumers diets. In the present study, Paradendryphiella salina, a fungal endophyte was isolated from Saccharina latissima (L.) and Laminaria digitata (Hudson.) and its fatty acid composition was assessed at increasing salinity and temperature conditions. Results showed that fungal composition in terms of fatty acids displayed algal-dependent trajectories in response to temperature increase. This highlights that C18 unsaturated fatty acids are key components in the host-dependant acclimation of P. salina to salinity and temperature changes. Full article
(This article belongs to the Special Issue Lipids in the Ocean 2021)
Show Figures

Figure 1

18 pages, 2613 KiB  
Article
Secondary Metabolites from the Culture of the Marine-derived Fungus Paradendryphiella salina PC 362H and Evaluation of the Anticancer Activity of Its Metabolite Hyalodendrin
by Ambre Dezaire, Christophe H. Marchand, Marine Vallet, Nathalie Ferrand, Soraya Chaouch, Elisabeth Mouray, Annette K. Larsen, Michèle Sabbah, Stéphane D. Lemaire, Soizic Prado and Alexandre E. Escargueil
Mar. Drugs 2020, 18(4), 191; https://doi.org/10.3390/md18040191 - 3 Apr 2020
Cited by 13 | Viewed by 5164
Abstract
High-throughput screening assays have been designed to identify compounds capable of inhibiting phenotypes involved in cancer aggressiveness. However, most studies used commercially available chemical libraries. This prompted us to explore natural products isolated from marine-derived fungi as a new source of molecules. In [...] Read more.
High-throughput screening assays have been designed to identify compounds capable of inhibiting phenotypes involved in cancer aggressiveness. However, most studies used commercially available chemical libraries. This prompted us to explore natural products isolated from marine-derived fungi as a new source of molecules. In this study, we established a chemical library from 99 strains corresponding to 45 molecular operational taxonomic units and evaluated their anticancer activity against the MCF7 epithelial cancer cell line and its invasive stem cell-like MCF7-Sh-WISP2 counterpart. We identified the marine fungal Paradendryphiella salina PC 362H strain, isolated from the brown alga Pelvetia caniculata (PC), as one of the most promising fungi which produce active compounds. Further chemical and biological characterizations of the culture of the Paradendryphiella salina PC 362H strain identified (-)-hyalodendrin as the active secondary metabolite responsible for the cytotoxic activity of the crude extract. The antitumor activity of (-)-hyalodendrin was not only limited to the MCF7 cell lines, but also prominent on cancer cells with invasive phenotypes including colorectal cancer cells resistant to chemotherapy. Further investigations showed that treatment of MCF7-Sh-WISP2 cells with (-)-hyalodendrin induced changes in the phosphorylation status of p53 and altered expression of HSP60, HSP70 and PRAS40 proteins. Altogether, our study reveals that this uninvestigated marine fungal crude extract possesses a strong therapeutic potential against tumor cells with aggressive phenotypes and confirms that members of the epidithiodioxopiperazines are interesting fungal toxins with anticancer activities. Full article
Show Figures

Figure 1

Back to TopTop