Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = PVDF focused transducer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7279 KiB  
Article
Design and Implementation of Novel Testing System for Intelligent Tire Development: From Bench to Road
by Ti Wu, Xiaolong Zhang, Dong Wang, Weigong Zhang, Deng Pan and Liang Tao
Sensors 2025, 25(8), 2430; https://doi.org/10.3390/s25082430 - 12 Apr 2025
Cited by 1 | Viewed by 698
Abstract
Intelligent tire technology significantly enhances vehicle performance and driving safety by integrating sensors and electronics within the tire to facilitate the real-time monitoring of tire–road interactions. However, its testing and validation face challenges due to the absence of integrated bench and road testing [...] Read more.
Intelligent tire technology significantly enhances vehicle performance and driving safety by integrating sensors and electronics within the tire to facilitate the real-time monitoring of tire–road interactions. However, its testing and validation face challenges due to the absence of integrated bench and road testing frameworks. This paper introduces a novel, comprehensive testing system designed to support the full lifecycle development of intelligent tire technologies across both laboratory and real-world driving scenarios, focusing on accelerometer and strain-based sensing. Featuring a modular, distributed architecture, the system integrates an instrumented wheel equipped with multiple embedded tire sensors and a wheel force transducer (WFT), as well as vehicle motion and driving behavior sensors. A robust data acquisition platform based on NI CompactRIO supports multiple-channel high-precision sensing, with sampling rates of up to 50 kHz. The system ensures that data performance aligns with diverse intelligent tire sensing principles, supports a wide range of test parameters, and meets the distinct needs of each development stage. The testing system was applied and validated in a tire vertical load estimation study, which systematically explored and validated estimation methods using multiple accelerometers and PVDF sensors, compared sensor characteristics and estimation performance under different installation positions and sensor types, and culminated in a product-level assessment in road conditions. The experimental results confirmed the higher accuracy of accelerometers in vertical load estimation, validated the developed estimation algorithms and the intelligent tire product, and demonstrated the functionality and performance of the testing system. This work provides a versatile and reliable platform for advancing intelligent tire technologies, supporting both future research and industrial applications. Full article
Show Figures

Figure 1

17 pages, 3896 KiB  
Article
Comparative Study of Leak Detection in PVC Water Pipes Using Ceramic, Polymer, and Surface Acoustic Wave Sensors
by Najah Hamamed, Charfeddine Mechri, Taoufik Mhammedi, Nourdin Yaakoubi, Rachid El Guerjouma, Slim Bouaziz and Mohamed Haddar
Sensors 2023, 23(18), 7717; https://doi.org/10.3390/s23187717 - 7 Sep 2023
Cited by 5 | Viewed by 3176
Abstract
The detection and location of pipeline leakage can be deduced from the time arrival leak signals measured by acoustic sensors placed at the pipe. Ongoing research in this field is primarily focused on refining techniques for accurately estimating the time delays. This enhancement [...] Read more.
The detection and location of pipeline leakage can be deduced from the time arrival leak signals measured by acoustic sensors placed at the pipe. Ongoing research in this field is primarily focused on refining techniques for accurately estimating the time delays. This enhancement predominantly revolves around the application of advanced signal processing methods. Additionally, researchers are actively immersed in the utilization of machine learning approaches on vibro-acoustic data files, to determine the presence or absence of leaks. Less attention has been given to evaluating the sensitivity, performance, and overall effectiveness of these sensors in leak detection; although acoustic methods have been successfully used for leak detection in metallic pipes, they are less effective in plastic pipes due to the high attenuation of leak noise signals. The primary thrust of this research centers on identifying sensors that not only possess sensitivity but also exhibit high efficiency. To accomplish this goal, we conducted an exhaustive evaluation of the performance of three distinct categories of acoustic sensors employed for detecting water leaks in plastic pipes: specifically, lead zirconate titanate (PZT) sensors, polyvinylidene fluoride (PVDF) sensors, and surface acoustic wave (SAW) sensors. Our evaluation encompassed the performance of PVDF and SAW sensors in leak detection, comparing them to PZT sensors under a variety of conditions, including different leak sizes, flow rates, and distances from the leak. The results showed that all three sensors, when they were placed in the same position, were able to detect water leaks in plastic pipes with different sensitivities. For small leaks (1 mm, 2 mm), the PVDF sensor showed the greatest sensitivity (0.4 dB/L/h, 0.33 dB/L/h), followed by the SAW sensor (0.16 dB/L/h, 0.14 dB/L/h), and finally the PZT (0.13 dB/L/h, 0.12 dB/L/h). Similarly, for larger leaks (4 mm, 10 mm), the PVDF sensor continued to show superior sensitivity (0.2 dB/L/h, 0.17 dB/L/h), followed by the SAW sensor (0.13 dB/L/h, 0.11), and finally the PZT sensor (0.12 dB/L/h, 0.1 dB/L/h), outperforming the PZT sensor. This suggests that SAW and PVDF sensors, have the potential to serve as valuable, cost-effective alternatives to traditional commercial leak noise transducers. The outcomes of this comparative study involving three acoustic sensors hold the potential to advance the development of robust and dependable systems for the detection of water leaks in plastic pipelines. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

13 pages, 3075 KiB  
Article
Design, Fabrication, and Evaluation of Multifocal Point Transducer for High-Frequency Ultrasound Applications
by Thanh Phuoc Nguyen, Nguyen Thanh Phong Truong, Nhat Quang Bui, Van Tu Nguyen, Giang Hoang, Jaeyeop Choi, Thi Tuong Vy Phan, Van Hiep Pham, Byung-Gak Kim and Junghwan Oh
Sensors 2019, 19(3), 609; https://doi.org/10.3390/s19030609 - 1 Feb 2019
Cited by 5 | Viewed by 6717
Abstract
The present study illustrates the design, fabrication, and evaluation of a novel multifocal point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound application. The fabricated MFP surface was press-focused using a computer numerical control (CNC) machining tool-customized multi-spherical pattern object. [...] Read more.
The present study illustrates the design, fabrication, and evaluation of a novel multifocal point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound application. The fabricated MFP surface was press-focused using a computer numerical control (CNC) machining tool-customized multi-spherical pattern object. The multi-spherical pattern has five spherical surfaces with equal area and connected continuously to have the same energy level at focal points. Center points of these spheres are distributed in a linear pattern with 1 mm distance between each two points. The radius of these spheres increases steadily from 10 mm to 13.86 mm. The designed MFP transducer had a center frequency of 50 MHz and a −6 dB bandwidth of 68%. The wire phantom test was conducted to study and demonstrate the advantages of this novel design. The obtained results for MFP transducer revealed a significant increase (4.3 mm) of total focal zone in the near-field and far-field area compared with 0.48 mm obtained using the conventional single focal point transducer. Hence, the proposed method is promising to fabricate MFP transducers for deeper imaging depth applications. Full article
(This article belongs to the Special Issue Ultrasound Transducers)
Show Figures

Figure 1

8 pages, 456 KiB  
Article
Single Element-Based Dual Focused Photoacoustic Microscopy
by Jianbo Tang and Huabei Jiang
Photonics 2015, 2(1), 156-163; https://doi.org/10.3390/photonics2010156 - 3 Feb 2015
Cited by 10 | Viewed by 6077
Abstract
We present a single element-based dual focused photoacoustic microscopy (PAM) that shows improved signal-to-noise ratio and lateral resolution compared to conventional single focused PAM in the out-of-focus region. This dual focused PAM is based on the novel design of a single element-based dual [...] Read more.
We present a single element-based dual focused photoacoustic microscopy (PAM) that shows improved signal-to-noise ratio and lateral resolution compared to conventional single focused PAM in the out-of-focus region. This dual focused PAM is based on the novel design of a single element-based dual focused transducer coupled with improved image reconstruction method using synthetic aperture dual focusing technique (SADFT). Polyvinylidene fluoride (PVDF) was used to fabricate the dual-focused transducer and phantom experiments were conducted to demonstrate the advantages of this novel transducer design. Experimental results obtained show that the signal-to-noise ratio and lateral resolution can be improved with a factor of 2X in the conventionally out-of-focus region using this technique. Full article
Show Figures

Graphical abstract

Back to TopTop