Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = PCNRD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2736 KB  
Article
Surface Performance Evaluation and Mix Design of Porous Concrete with Noise Reduction and Drainage Performance
by Yijun Xiu, Miao Hu, Chenlong Zhang, Shaoqi Wu, Mulian Zheng, Jinghan Xu and Xinghan Song
Materials 2025, 18(23), 5433; https://doi.org/10.3390/ma18235433 - 2 Dec 2025
Viewed by 376
Abstract
Porous concrete is widely recognized as an eco-friendly pavement material; however, existing studies mainly focus on its use as a base course, and systematic investigations on porous concrete specifically designed for heavy-traffic pavements and multifunctional surface performance remain limited. In this study, a [...] Read more.
Porous concrete is widely recognized as an eco-friendly pavement material; however, existing studies mainly focus on its use as a base course, and systematic investigations on porous concrete specifically designed for heavy-traffic pavements and multifunctional surface performance remain limited. In this study, a novel multifunctional porous concrete with integrated noise reduction and drainage performance (PCNRD) was developed as a top-layer pavement material, addressing the performance gap in current applications. A comprehensive evaluation of the surface properties of porous concrete was performed based on tests of the sound absorption, void ratio, permeability, and wear resistance. The results demonstrate that the porous concrete exhibits excellent sound absorption (sound absorption coefficient 0.22–0.35) and high permeability (permeability coefficient 0.63–1.13 cm/s), and superior abrasion resistance (abrasion loss ≤ 20%) within an optimized porosity range of 17–23%. Furthermore, an optimized pavement thickness (8–10 cm) was proposed, and functional correlations among key surface performance indicators were revealed for the first time. Based on a uniform experimental design, four key mix parameters (water–cement ratio, cement content, silica fume content, and cement strength grade) were examined using strength and effective porosity as dual control indices, leading to the development of a novel mix design method tailored for PCNRD. This study not only fills the technical gap in high-performance porous concrete for heavy-traffic pavement surfaces but also provides a practical scientific framework for its broader engineering application. Full article
Show Figures

Figure 1

Back to TopTop