Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = PBT-GF30 (70% polybutylene terephthalate + 30% fiber glass)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6900 KiB  
Article
Effect of the Interface/Interphase on the Water Ingress Properties of Joints with PBT-GF30 and Aluminum Substrates Using Silicone Adhesive
by Catarina S. P. Borges, Eduardo A. S. Marques, Ricardo J. C. Carbas, Alireza Akhavan-Safar, Christoph Ueffing, Philipp Weißgraeber and Lucas F. M. da Silva
Polymers 2023, 15(4), 788; https://doi.org/10.3390/polym15040788 - 4 Feb 2023
Cited by 4 | Viewed by 1972
Abstract
The aim of this work is to analyze the difference between silicone/composite and silicone/metal interphases, both in terms of water diffusion behavior and failure of the aged joints. For that, silicone joints with two different suhbstrates were prepared. The substrates were polybutylene terephthalate [...] Read more.
The aim of this work is to analyze the difference between silicone/composite and silicone/metal interphases, both in terms of water diffusion behavior and failure of the aged joints. For that, silicone joints with two different suhbstrates were prepared. The substrates were polybutylene terephthalate with 30% of short glass fiber (PBT-GF30) and 6082-T6 aluminum. It is assumed that the water uptake of the joints is equal to the water uptake of the substrate, adhesive, and interphase. Therefore, knowing the first three, the last could be isolated. To study the water diffusion behavior of the complete joint, rectangular joints were prepared, immersed in water and their water uptake was measured. The water immersion was conducted at 70 °C. It was concluded that the aluminum/silicone joints absorbed more water through the interphase region than the PBT-GF30/silicone joints, since the difference between the expected water uptake and the experimentally measured mass gain is significantly higher, causing adhesive failure of the joint. The same was not observed in the PBT-GF30/silicone, with a more stable interphase, that does not absorb measurable quantities of water and always exhibits cohesive failure. Full article
(This article belongs to the Special Issue Polymer Blends and Composites)
Show Figures

Figure 1

25 pages, 1655 KiB  
Article
Effect of Water Ingress on the Mechanical and Chemical Properties of Polybutylene Terephthalate Reinforced with Glass Fibers
by Catarina S. P. Borges, Alireza Akhavan-Safar, Eduardo A. S. Marques, Ricardo J. C. Carbas, Christoph Ueffing, Philipp Weißgraeber and Lucas F. M. da Silva
Materials 2021, 14(5), 1261; https://doi.org/10.3390/ma14051261 - 7 Mar 2021
Cited by 30 | Viewed by 4353
Abstract
Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate [...] Read more.
Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally. Full article
(This article belongs to the Special Issue Multiscaling in Polymer Composite Materials)
Show Figures

Figure 1

19 pages, 12705 KiB  
Article
Ultrasonic Welding of PBT-GF30 (70% Polybutylene Terephthalate + 30% Fiber Glass) and Expanded Polytetrafluoroethylene (e-PTFE)
by Dan Dobrotă and Sergiu Viorel Lazăr
Polymers 2021, 13(2), 298; https://doi.org/10.3390/polym13020298 - 19 Jan 2021
Cited by 9 | Viewed by 4425
Abstract
The ultrasonic welding of polymeric materials is one of the methods often used in practice. However, each couple of material subjected to ultrasonic welding is characterized by different values of technological parameters. Therefore, the main objective of the research presented in this paper [...] Read more.
The ultrasonic welding of polymeric materials is one of the methods often used in practice. However, each couple of material subjected to ultrasonic welding is characterized by different values of technological parameters. Therefore, the main objective of the research presented in this paper is to optimize the parameters for the ultrasonic welding of two materials, namely PBT-GF30 (70% polybutylene terephthalate + 30% fiber glass) and expanded polytetrafluoroethylene (e-PTFE). In this sense, the research was carried out considering a plate-type part made of PBT-GF30, which had a thickness of 2.1 mm, and a membrane-type part made of e-PTFE, with a thickness of 0.3 mm. The condition imposed on the welded joints made, namely to correspond from a technical point of view, was that the detachment pressure of the membrane should be at least 4 bar. To this end, a test device was designed. Additionally, the topography of the material layer from the plate-type part was analyzed, as well as the chemical composition and surface condition for the membrane-type part. The obtained results allowed the optimization of the following parameters: The welding force; welding time; amplitude; and holding time. All experimental results were processed using STATISTICS software, which established how each parameter influences the characteristics of welded joints. Full article
(This article belongs to the Special Issue Processing-Structure-Properties Relationships in Polymers II)
Show Figures

Graphical abstract

Back to TopTop