Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = PBRTQC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4742 KB  
Article
Comparison of EWMA, MA, and MQ Under a Unified PBRTQC Framework for Thyroid and Coagulation Tests
by Banjiu Zhaxi, Chaochao Ma, Qian Chen, Yingying Hu, Wenyi Ding, Xiaoqi Li and Ling Qiu
Diagnostics 2026, 16(2), 288; https://doi.org/10.3390/diagnostics16020288 - 16 Jan 2026
Viewed by 210
Abstract
Background: Patient-based real-time quality control (PBRTQC) enables continuous analytical monitoring using routine patient results; however, the performance of classical statistical process control (SPC) algorithms varies across analytes, and standardized evaluation and optimization strategies remain limited. To address this gap, this study compared three [...] Read more.
Background: Patient-based real-time quality control (PBRTQC) enables continuous analytical monitoring using routine patient results; however, the performance of classical statistical process control (SPC) algorithms varies across analytes, and standardized evaluation and optimization strategies remain limited. To address this gap, this study compared three SPC algorithms—moving average (MA), moving quantile (MQ), and exponentially weighted moving average (EWMA)—within a unified preprocessing framework and proposed a composite performance metric for parameter optimization. Methods: Routine patient results from six laboratory analytes were analyzed using a standardized “transform–truncate–alarm” PBRTQC workflow. Simulated systematic biases were introduced for model training, and algorithm-specific parameters were optimized using a composite metric integrating sensitivity, false-positive rate (FPR), and detection delay. Performance was subsequently evaluated on an independent validation dataset. Results: For most analytes, all three SPC algorithms demonstrated robust PBRTQC performance, achieving high sensitivity (generally ≥0.85), very low false-positive rates (<0.002), and rapid detection of systematic bias. EWMA showed more balanced performance for thyroid-stimulating hormone (TSH), with improved sensitivity and shorter detection delay compared with MA and MQ. The proposed composite metric effectively facilitated clinically meaningful parameter optimization across algorithms. Conclusions: Under a unified preprocessing framework, classical SPC algorithms provided reliable PBRTQC performance across multiple analytes, with EWMA offering advantages for more variable measurements. The proposed composite metric supports standardized, practical, and analyte-adaptive PBRTQC implementation in clinical laboratories. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

16 pages, 1205 KB  
Review
Machine Learning for Patient-Based Real-Time Quality Control (PBRTQC), Analytical and Preanalytical Error Detection in Clinical Laboratory
by Nathan Lorde, Shivani Mahapatra and Tejas Kalaria
Diagnostics 2024, 14(16), 1808; https://doi.org/10.3390/diagnostics14161808 - 20 Aug 2024
Cited by 8 | Viewed by 5718
Abstract
The rapidly evolving field of machine learning (ML), along with artificial intelligence in a broad sense, is revolutionising many areas of healthcare, including laboratory medicine. The amalgamation of the fields of ML and patient-based real-time quality control (PBRTQC) processes could improve the traditional [...] Read more.
The rapidly evolving field of machine learning (ML), along with artificial intelligence in a broad sense, is revolutionising many areas of healthcare, including laboratory medicine. The amalgamation of the fields of ML and patient-based real-time quality control (PBRTQC) processes could improve the traditional PBRTQC and error detection algorithms in the laboratory. This narrative review discusses published studies on using ML for the detection of systematic errors, non-systematic errors, and combinations of different types of errors in clinical laboratories. The studies discussed used ML for detecting bias, the requirement for re-calibration, samples contaminated with intravenous fluid or EDTA, delayed sample analysis, wrong-blood-in-tube errors, interference or a combination of different types of errors, by comparing the performance of ML models with human validators or traditional PBRTQC algorithms. Advantages, limitations, the creation of standardised ML models, ethical and regulatory aspects and potential future developments have also been discussed in brief. Full article
(This article belongs to the Special Issue Laboratory Medicine: Extended Roles in Healthcare Delivery)
Show Figures

Figure 1

12 pages, 920 KB  
Article
Integrating Patient-Based Real-Time Quality Control (PBRTQC) in a New Field: Inter-Comparison between Biochemical Instrumentations with LDL-C
by Jingyuan Wang, Chedong Zhao, Linlin Fan and Xiaoqin Wang
Diagnostics 2024, 14(9), 872; https://doi.org/10.3390/diagnostics14090872 - 23 Apr 2024
Cited by 1 | Viewed by 4307
Abstract
Background: Patient-based real-time quality control (PBRTQC) can be a valuable tool in clinical laboratories due to its cost-effectiveness and constant monitoring. More focus is placed on discovering and improving algorithms that compliment conventional internal control techniques. The practical implementation of PBRTQC with a [...] Read more.
Background: Patient-based real-time quality control (PBRTQC) can be a valuable tool in clinical laboratories due to its cost-effectiveness and constant monitoring. More focus is placed on discovering and improving algorithms that compliment conventional internal control techniques. The practical implementation of PBRTQC with a biochemical instrument comparison is lacking. We aim to evaluate PBRTQC’s efficacy and practicality by comparing low-density lipoprotein cholesterol (LDL-C) test results to ensure consistent real-time monitoring across biochemical instrumentations in clinical laboratories. Method: From 1 September 2021 to 30 August 2022, the First Affiliated Hospital of Xi’an Jiaotong University collected data from 158,259 both healthy and diseased patients, including 84,187 male and 74,072 female patients, and examined their LDL-C results. This dataset encompassed a group comprising 50,556 individuals undergoing health examinations, a group comprising 42,472 inpatients (IP), and a group comprising 75,490 outpatients (OP) for the PBRTQC intelligent monitoring platform to conduct daily tests, parameter configuration, program development, real-time execution, and performance validation of the patients’ data. Moreover 40 patients’ LDL-C levels were assessed using two biochemical analyzers, designated as the reference and comparator instruments. A total of 160 LDL-C results were obtained from 40 both healthy and diseased patients, including 14 OP, 16 IP, and 10 health examination attendees, who were selected to represent LDL-C levels broadly. Two biochemical instruments measured LDL-C measurements from the same individuals to investigate consistency and reproducibility across patient statuses and settings. We employed exponentially weighted moving average (EWMA) and moving median (MM) methods to calculate inter-instrument bias and ensure analytical accuracy. Inter-instrument bias for LDL-C measurements was determined by analyzing fresh serum samples, different concentrations of quality control (QC), and commercialized calibrators, employing both EWMA and MM within two assay systems. The assessment of inter-instrumental bias with five different methods adhered to the external quality assessment standards of the Clinical Laboratory Center of the Health Planning Commission, which mandates a bias within ±15.0%. Result: We calculated inter-instrument comparison bias with each of the five methods based on patient big data. The comparison of fresh serum samples, different concentrations of QC, commercialized calibrators, and EWMA were all in the permissive range, except for MM. MM showed that the bias between two biochemical instruments in the concentration ranges of 1.5 mmoL/L–6.2 mmoL/L exceeded the permissible range. This was mainly due to the small number of specimens, affected by variations among individual patients, leading to increased false alarms and reduced effectiveness in monitoring the consistency of the inter-instrumental results. Moreover, the inter-comparison bias derived from EWMA was less than 3.01%, meeting the 15% range assessment criteria. The bias result for MM was lower than 24.66%, which was much higher than EWMA. Thus, EWMA is better than MM for monitoring inter-instrument comparability. PBRTQC can complement the use of inter-comparison bias between biochemical analyzers. EWMA has comparable inter-instrument comparability monitoring efficacy. Conclusions: The utilization of AI-based PBRTQC enables the automated real-time comparison of test results across different biochemical instruments, leading to a reduction in laboratory operating costs, enhanced work efficiency, and improved QC. This advanced technology facilitates seamless data integration and analysis, ultimately contributing to a more streamlined and efficient laboratory workflow in the biomedical field. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

Back to TopTop