Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = OsARK1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1932 KB  
Article
A Mycorrhiza-Associated Receptor-like Kinase Regulates Disease Resistance in Rice
by Zichao Zheng, Ke Zou, Guodong Lu, Zonghua Wang, Haitao Cui and Airong Wang
Agronomy 2025, 15(10), 2298; https://doi.org/10.3390/agronomy15102298 - 28 Sep 2025
Cited by 1 | Viewed by 793
Abstract
Most terrestrial plants establish symbiotic relationships with microorganisms to acquire nutrients and simultaneously restrict pathogen infection. In rice, the receptor-like kinase OsARK1 is essential for the colonization and development of arbuscular mycorrhizal (AM) fungi. However, whether OsARK1 participates in plant–pathogen interactions remain unknown. [...] Read more.
Most terrestrial plants establish symbiotic relationships with microorganisms to acquire nutrients and simultaneously restrict pathogen infection. In rice, the receptor-like kinase OsARK1 is essential for the colonization and development of arbuscular mycorrhizal (AM) fungi. However, whether OsARK1 participates in plant–pathogen interactions remain unknown. Here, we demonstrate that OsARK1 is involved in the transcriptional reprogramming of immune defense-related genes prior to and following AM colonization. Mutation of OsARK1 resulted in increased susceptibility to Magnaporthe oryzae (blast fungus) and Xanthomonas oryzae (bacterial blight). Transcriptomic profiling during blast infection demonstrated OsARK1 coordinates early immune responses; particularly, the upregulation of genes encoding lectin receptor-like kinases (LecRLKs), nucleotide-binding leucine-rich repeat (NLR) immune receptors and secondary metabolism-related genes was significantly impaired in Osark1 mutant. Collectively, OsARK1 acts as a positive regulator of rice immunity against pathogens while fine-tuning defense suppression during beneficial AM symbiosis. Full article
(This article belongs to the Special Issue Interaction Mechanisms Between Crops and Pathogens)
Show Figures

Figure 1

16 pages, 3914 KB  
Article
Iron Regulatory Protein 1 Inhibits Ferritin Translation Responding to OsHV-1 Infection in Ark Clams, Scapharca Broughtonii
by Bowen Huang, Xiang Zhang, Qin Liu, Changming Bai, Chen Li, Chongming Wang and Lusheng Xin
Cells 2022, 11(6), 982; https://doi.org/10.3390/cells11060982 - 13 Mar 2022
Cited by 3 | Viewed by 3522
Abstract
Elemental iron is an indispensable prosthetic group of DNA replication relative enzymes. The upregulation of ferritin translation by iron regulatory proteins (IRP1) in host cells is a nutritional immune strategy to sequester available iron to pathogens. The efficient replication of Ostreid herpesvirus 1 [...] Read more.
Elemental iron is an indispensable prosthetic group of DNA replication relative enzymes. The upregulation of ferritin translation by iron regulatory proteins (IRP1) in host cells is a nutritional immune strategy to sequester available iron to pathogens. The efficient replication of Ostreid herpesvirus 1 (OsHV-1), a lethal dsDNA virus among bivalves, depends on available iron. OsHV-1 infection was found to trigger iron limitation in ark clams; however, it is still an enigma how OsHV-1 successfully conducted rapid replication, escaping host iron limitations. In this study, we identified the IRP1 protein (designated as SbIRP-1) in the ark clam (Scapharca broughtonii) and found it could bind to the iron-responsive element (IRE) of ferritin (SbFn) mRNA based on electrophoretic mobility shift assay (EMSA). Knockdown of SbIRP-1 expression (0.24 ± 1.82-fold of that in NC group, p < 0.01) by RNA interference resulted in the accumulation of SbFn in hemocytes (1.79 ± 0.01-fold, p < 0.01) post-24 h of enhanced RNA interference injection. During OsHV-1 infection, SbFn mRNA was significantly upregulated in hemocytes from 24 h to 60 h, while its protein level was significantly reduced from 24 h to 48 h, with the lowest value at 36 h post-infection (0.11 ± 0.01-fold, p < 0.01). Further analysis by RNA immunoprecipitation assays showed that OsHV-1 could enhance the binding of SbIRP-1 with the SbFn IRE, which was significantly increased (2.17 ± 0.25-fold, p < 0.01) at 36 h post-infection. Consistently, SbIRP-1 protein expression was significantly increased in hemocytes from 12 h to 48 h post OsHV-1 infection (p < 0.01). In conclusion, the results suggest that OsHV-1 infection could suppress post-transcriptional translation of SbFn through the regulation of SbIRP-1, which likely contributes to OsHV-1 evasion of SbFn-mediating host iron limitation. Full article
Show Figures

Figure 1

16 pages, 3239 KB  
Article
ROR2 Is Epigenetically Regulated in Endometrial Cancer
by Dongli Liu, Luis Enriquez and Caroline E. Ford
Cancers 2021, 13(3), 383; https://doi.org/10.3390/cancers13030383 - 21 Jan 2021
Cited by 11 | Viewed by 4231
Abstract
The Wnt signalling receptor ROR2 has been identified as a possible therapeutic target in numerous cancers; however, its exact role remains unclear. The aim of this study was to investigate the role of ROR2 in endometrial cancer (EC) and the potential mechanism associated [...] Read more.
The Wnt signalling receptor ROR2 has been identified as a possible therapeutic target in numerous cancers; however, its exact role remains unclear. The aim of this study was to investigate the role of ROR2 in endometrial cancer (EC) and the potential mechanism associated with its altered expression. The association between ROR2 mRNA expression levels and clinicopathological parameters, including overall survival (OS), in EC was analysed in The Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) cohort and GEO dataset GSE17025. Four EC cell lines (KLE, MFE-296, Ishikawa and ARK-1) and eight clinical EC samples were analysed for ROR2 methylation via Combined Bisulphite Restriction Analysis (COBRA) and bisulphite genomic sequencing (BGS). In addition, the functional effects of ROR2 overexpression were investigated in Ishikawa and ARK-1 cells following ectopic ROR2 expression. ROR2 promoter methylation or reduced ROR2 expression were both found to correlate with shorter OS, high grade and serous subtype in the TCGA-UCEC and GEO datasets. ROR2 was epigenetically silenced by promoter methylation in both patient samples and cell lines. A significant correlation between ROR2 expression levels and promoter methylation was observed in patient samples (r = −0.797, p = 0.018). ROR2 restoration in ARK-1 significantly decreased invasion ability, with associated changes in epithelial-mesenchymal transition (EMT) markers. ROR2 plays a tumour-suppressor role in EC and is epigenetically suppressed with the development of disease. It may represent a diagnostic or therapeutic candidate for EC. Full article
(This article belongs to the Special Issue Epigenomic Studies of Gynecological Cancer)
Show Figures

Figure 1

9 pages, 6023 KB  
Article
Ostreid Herpesvirus-1 Infects Specific Hemocytes in Ark Clam, Scapharca broughtonii
by Lusheng Xin, Chen Li, Changming Bai and Chongming Wang
Viruses 2018, 10(10), 529; https://doi.org/10.3390/v10100529 - 28 Sep 2018
Cited by 8 | Viewed by 4056
Abstract
High levels of ostreid herpesvirus 1 (OsHV-1) were detected in hemocytes of OsHV-1 infected mollusks. Mollusk hemocytes are comprised of different cell types with morphological and functional heterogeneity. Granular cells are considered the main immunocompetent hemocytes. This study aimed to ascertain if OsHV-1 [...] Read more.
High levels of ostreid herpesvirus 1 (OsHV-1) were detected in hemocytes of OsHV-1 infected mollusks. Mollusk hemocytes are comprised of different cell types with morphological and functional heterogeneity. Granular cells are considered the main immunocompetent hemocytes. This study aimed to ascertain if OsHV-1 infects specific types of hemocytes in ark clams. Types of hemocytes were first characterized through microexamination and flow cytometry. In addition to a large group of red cells, there were three types of recognizable granular cells in ark clams. Type II granular cells were mostly found with OsHV-1 infection by transmission electron microscope (TEM) examination, and represented the hemocyte type that was susceptible to OsHV-1 infection. The subcellular location of OsHV-1 particles in apoptotic type II granular cells was further analyzed. Some OsHV-1 particles were free inside the apoptotic cells, which may contribute to OsHV-1 transmission among cells in the host, some particles were also found enclosed inside apoptotic bodies. Apoptosis is an important part of the host defense system, but might also be hijacked by OsHV-1 as a strategy to escape host immune attack. Following this investigation, a primary culture of type II granular cells with OsHV-1 infection would facilitate the research on the interaction between OsHV-1 and mollusk hosts. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop