Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Orius minutus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2325 KB  
Article
Natural Enemies Acquire More Prey Aphids from Hormone-Treated Insect-Attracting Plants
by Xiaosheng Jiang, Xingrui Zhang, Guodong Han, Shovon Chandra Sarkar and Feng Ge
Plants 2025, 14(2), 147; https://doi.org/10.3390/plants14020147 - 7 Jan 2025
Viewed by 2162
Abstract
Exogenous plant hormones regulate the agronomic and physiological performance of plants and thus can influence the abundance of insect groups. We surveyed the arthropods on flowering plants Cnidium monnieri and found that the abundance of natural enemies Propylaea japonica and Orius minutus in [...] Read more.
Exogenous plant hormones regulate the agronomic and physiological performance of plants and thus can influence the abundance of insect groups. We surveyed the arthropods on flowering plants Cnidium monnieri and found that the abundance of natural enemies Propylaea japonica and Orius minutus in the plots treated with salicylic acid (SA) and indole acetic acid (IAA) was significantly increased compared with those in the clean water (control) plots. Then, we investigated the effects of spraying SA, IAA, and clean water on the population parameters of Semiaphis heraclei reared on C. monnieri. Our results from the age-stage, two-sex life table analysis revealed a significantly shorter pre-adult duration for aphids reared on SA-treated C. monnieri compared to those reared on the other two treatments. The intrinsic rate of increase, finite rate of increase, and net reproductive rate of aphids reared on SA- and IAA-treated C. monnieri were significantly higher than those of aphids reared on clean water-treated C. monnieri. The fecundity rate was higher under the SA and IAA treatments than in the control, but the difference was not significant. This improved the ability of flowering plants to attract natural enemies by providing a larger food source. Full article
(This article belongs to the Special Issue Functional Plants for Ecological Control of Agricultural Pests)
Show Figures

Figure 1

16 pages, 3012 KB  
Article
Molecular Characterization of a Novel Rubodvirus Infecting Raspberries
by Ondřej Lenz, Igor Koloniuk, Tatiana Sarkisová, Radek Čmejla, Lucie Valentová, Martina Rejlová, Jiří Sedlák, Dag-Ragnar Blystad, Bijaya Sapkota, Zhibo Hamborg, Jiunn Luh Tan, Rostislav Zemek, Přibylová Jaroslava and Jana Fránová
Viruses 2024, 16(7), 1074; https://doi.org/10.3390/v16071074 - 3 Jul 2024
Cited by 2 | Viewed by 1703
Abstract
A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit [...] Read more.
A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit distantly related to other members. A screening of 679 plant and 168 arthropod samples from the Czech Republic and Norway revealed RaRV1 in 10 raspberry shrubs, one batch of Aphis idaei, and one individual of Orius minutus. Furthermore, a distinct isolate of this virus was found, sharing 95% amino acid identity in both the full nucleoprotein and partial sequence of the RNA-dependent RNA polymerase gene sequences, meeting the species demarcation criteria. This discovery marks the first reported instance of a rubodvirus infecting raspberry plants. Although transmission experiments under experimental conditions were unsuccessful, positive detection of the virus in some insects suggests their potential role as vectors for the virus. Full article
(This article belongs to the Special Issue Plant-Infecting Negative-Strand RNA Viruses 2025)
Show Figures

Figure 1

17 pages, 2273 KB  
Article
Demographic Evaluation of the Control Potential of Orius minutus (Hemiptera: Anthocoridae) Preying on Dendrothrips minowai Priesner (Thysanoptera: Thripidae) at Different Temperatures
by Rongmeng Lan, Xiaoli Ren, Kunqian Cao, Xia Zhou and Linhong Jin
Insects 2022, 13(12), 1158; https://doi.org/10.3390/insects13121158 - 15 Dec 2022
Cited by 4 | Viewed by 2210
Abstract
Tea thrips (Dendrothrips minowai Priesner) are the main pests that seriously affect the yield and quality of tea, resulting in huge economic losses. The Orius minutus is one of the most important natural enemies or BCA of thrips. However, we are not [...] Read more.
Tea thrips (Dendrothrips minowai Priesner) are the main pests that seriously affect the yield and quality of tea, resulting in huge economic losses. The Orius minutus is one of the most important natural enemies or BCA of thrips. However, we are not concerned with its predation ability on tea thrips, nor thermal influence on this pattern and their interaction. Therefore, this study recorded life table data of O. minutus and tea thrips combined with predation rate data to assess the ability of O. minutus to control tea thrips using age-stage, two-sex life tables at five constant temperatures. The results showed that at 25 °C, O. minutus had the highest predation rate on tea thrips, with an average generation time (T) of 22 d, intrinsic rate of increase (r) of 0.12 d-1, fecundity of 64.17, net reproduction rate (R0) of 12.76 offspring, and net predation rate (c0) of 310.92. In addition, around 410,000 adults and 1.98 million eggs were produced within 120 days. While the temperature change was straightforward, temperature effects on insects are not linear. The population size of the O. minutus and tea thrip trended similarly at 15–30 °C and would eliminate dramatically at 35 °C. Meanwhile, the results indicated that O. minutus could effectively inhibit the population growth of tea thrips at 15–30 °C, within 5–19 days at an intervention ratio of 10 adult O. minutus and 200 thrips individuals. The simulations under different mediated temperatures demonstrated that O. minutus is effective against tea thrips over a wide temperature range expected to be potential for biocontrol of tea thrips in tea gardens. Full article
Show Figures

Figure 1

14 pages, 18061 KB  
Article
Basic Studies Aiming at Orius minutus (Hemiptera: Anthocoridae) Mass-Rearing
by Hye-Jeong Jun, Kyoung-Su Kim and Eun-Hye Ham
Insects 2022, 13(1), 77; https://doi.org/10.3390/insects13010077 - 10 Jan 2022
Cited by 4 | Viewed by 3446
Abstract
This study presented biological and economic data for the mass-rearing of Orius minutus in Korea. Simplifying the mass-rearing process through an alternative diet and an artificial oviposition substrate is a prerequisite for enhancing the usability of this insect as a biological control agent. [...] Read more.
This study presented biological and economic data for the mass-rearing of Orius minutus in Korea. Simplifying the mass-rearing process through an alternative diet and an artificial oviposition substrate is a prerequisite for enhancing the usability of this insect as a biological control agent. We compare the hatch rate of O. minutus eggs deposited on a plant substrate with that of eggs deposited on two artificial substrates, cork sheets and rubber. The results indicate that cork sheet is the most cost-effective artificial oviposition substrate for the mass-rearing of O. minutus. We also examine five feeding treatments that included two types of brine shrimp eggs and eggs of Ephestia cautella to compare the number of eggs laid in the fifth generation. We found no significant difference between the two treatment groups; 61.3 eggs were laid in the treatment group fed iron-coated brine shrimp and moth eggs, and 67.4 eggs were laid in the control group. The plant-free model developed in our study can reduce rearing costs by 70.5% compared to the conventional mass-rearing model. Full article
(This article belongs to the Special Issue Rearing Techniques for Biocontrol Agents of Insects, Mites, and Weeds)
Show Figures

Figure 1

Back to TopTop