Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = OrganoPt(IV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2293 KiB  
Article
Luminescent Diimine-Pt(IV) Complexes with Axial Phenyl Selenide Ligands
by Marzieh Dadkhah Aseman, Reza Babadi Aghakhanpour, Zohreh Sharifioliaei, Axel Klein and S. Masoud Nabavizadeh
Inorganics 2023, 11(10), 387; https://doi.org/10.3390/inorganics11100387 - 28 Sep 2023
Cited by 1 | Viewed by 1798
Abstract
Luminescent diimine-Pt(IV) complexes [Pt(N^N)(Me)2(PhSe)2], (N^N = 2,2′-bipyridine (bpy, 1b), 1,10-phenanthroline (phen, 2b), and 4,4′-dimethyl-2,2′-bipyridine (Me2bpy, 3b), PhSe = phenyl selenide were prepared and identified using multinuclear (1H, 13C{1H} [...] Read more.
Luminescent diimine-Pt(IV) complexes [Pt(N^N)(Me)2(PhSe)2], (N^N = 2,2′-bipyridine (bpy, 1b), 1,10-phenanthroline (phen, 2b), and 4,4′-dimethyl-2,2′-bipyridine (Me2bpy, 3b), PhSe = phenyl selenide were prepared and identified using multinuclear (1H, 13C{1H} and 77Se{1H}) NMR spectroscopy. The PhSe ligands were introduced through oxidative addition of diphenyl diselenide to the non-luminescent Pt(II) precursors [Pt(N^N)(Me)2], N^N = (bpy, 1a), (phen, 2a), (Me2bpy, 3a), to give the luminescent Pt(IV) complexes 1b3b. The UV-vis absorption spectra of 1b3b are characterised by intense bands in the range 240–330 nm. We assigned them to transitions of essentially π−π* character with small metal and PhSe ligand contributions with the help of TD-DFT (time-dependent density functional theory) calculations. The weak long-wavelength bands in the range 350–475 nm are of mixed ligand-to-metal charge transfer (L’MCT) (n(Se)→d(Pt)/intra-ligand charge transfer (IL’CT) (n(Se)→π*(Ph) or π(Ph)→π*(Ph))/ligand-to-ligand’ charge transfer (LL’CT) (L = N^N, L’ = PhSe, M = Pt and n = lone pair) character. The Pt(IV) complexes showed broad emission bands in the solid state at 298 and 77 K, peaking at 560–595 nm with a blue shift upon cooling. Structured emission bands were obtained in the range 450–600 nm, with the maxima depending on the N^N ligands and the solvent polarity (CH2Cl2 vs. dimethyl sulfoxide (DMSO) and aqueous tris(hydroxymethyl)aminomethane hydrochloride (tris-HCl) buffer). The emissions originate from essentially ligand-centred triplet states (3LC) with mixed IL’CT/L’MCT contributions as concluded from the DFT calculation. Such dominating PhSe contributions to the emissive states are unprecedented in the world of luminescent diimine-Pt(IV) complexes. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Organometallic Chemistry)
Show Figures

Graphical abstract

18 pages, 4178 KiB  
Article
Immobilisation of Platinum by Cupriavidus metallidurans
by Gordon Campbell, Lachlan MacLean, Frank Reith, Dale Brewe, Robert A. Gordon and Gordon Southam
Minerals 2018, 8(1), 10; https://doi.org/10.3390/min8010010 - 5 Jan 2018
Cited by 12 | Viewed by 7425
Abstract
The metal resistant bacterium Cupriavidus metallidurans CH34, challenged with aqueous platinous and platinic chloride, rapidly immobilized platinum. XANES/EXAFS analysis of these reaction systems demonstrated that platinum binding shifted from chloride to carboxyl functional groups within the bacteria. Pt(IV) was more toxic than Pt(II), [...] Read more.
The metal resistant bacterium Cupriavidus metallidurans CH34, challenged with aqueous platinous and platinic chloride, rapidly immobilized platinum. XANES/EXAFS analysis of these reaction systems demonstrated that platinum binding shifted from chloride to carboxyl functional groups within the bacteria. Pt(IV) was more toxic than Pt(II), presumably due to the oxidative stress imparted by the platinic form. Platinum immobilisation increased with time and with increasing concentrations of platinum. From a bacterial perspective, intracellular platinum concentrations were two to three orders of magnitude greater than the fluid phase, and became saturated at almost molar concentrations in both reaction systems. TEM revealed that C. metallidurans was also able to precipitate nm-scale colloidal platinum, primarily along the cell envelope where energy generation/electron transport occurs. Cells enriched in platinum shed outer membrane vesicles that were enriched in metallic, colloidal platinum, likely representing an important detoxification strategy. The formation of organo-platinum compounds and membrane encapsulated nanophase platinum, supports a role for bacteria in the formation and transport of platinum in natural systems, forming dispersion halos important to metal exploration. Full article
(This article belongs to the Special Issue Geomicrobiology and Biogeochemistry of Precious Metals)
Show Figures

Figure 1

Back to TopTop