Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Ophrys holosericea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 8768 KB  
Article
Composition of the Scent in Some Ophrys Orchids Growing in Basilicata (Southern Italy): A Solid-Phase Microextraction Study Coupled with Gas Chromatography and Mass Spectrometry
by Maurizio D’Auria, Richard Lorenz, Marisabel Mecca, Rocco Racioppi and Vito Antonio Romano
Compounds 2023, 3(4), 573-583; https://doi.org/10.3390/compounds3040041 - 14 Nov 2023
Cited by 2 | Viewed by 2197
Abstract
Several methods have been used to determine the volatile organic compounds emitted by Ophrys orchids. The use of different methods results in incomparable data. Solid-phase microextraction (SPME) has not been used extensively on Ophrys orchids. The main components found in the SPME analysis [...] Read more.
Several methods have been used to determine the volatile organic compounds emitted by Ophrys orchids. The use of different methods results in incomparable data. Solid-phase microextraction (SPME) has not been used extensively on Ophrys orchids. The main components found in the SPME analysis of the scent in Ophrys orchids were as follows: O. apifera: benzyl benzoate and α-copaene; O. crabronifera subsp. biscutella: pentadecane, heptadecane, and nonadecane; O. bertolonii subsp. bertolonii: pentadecane and heptadecane; O. passionis subsp. garganica: i-propyl palmitate and heptadecane; O. holosericea subsp. apulica: α-copaene, pentadecane, and heptadecane; O. lacaitae: α-copaene, pentadecane, and heptadecane; O. bombyliflora: cyclosativene, pentadecane, and ethyl dodecanoate; O. insectifera: 8-heptadecene and pentadecane; O. lutea: heptadecane and docosane; O. tenthredinifera subsp. neglecta: α-copaene, caryophyllene, and i-propyl palmitate. Full article
Show Figures

Figure 1

12 pages, 1072 KB  
Article
Characterization and Antioxidant Activity of Essential Oil of Four Sympatric Orchid Species
by Francesco Saverio Robustelli della Cuna, Jacopo Calevo, Elia Bari, Annalisa Giovannini, Cinzia Boselli and Aldo Tava
Molecules 2019, 24(21), 3878; https://doi.org/10.3390/molecules24213878 - 28 Oct 2019
Cited by 28 | Viewed by 4682
Abstract
The volatile fractions from fresh inflorescences of naturally growing orchids Anacamptis coriophora (L.) R. M. Bateman, Pridgeon & M. W. Chase subsp. fragrans (Pollini), Anacamptis pyramidalis (L.) R. Ophrys holosericea (Burm.) Greuter and Serapias vomeracea (Burm. f.) B. were isolated by steam distillation [...] Read more.
The volatile fractions from fresh inflorescences of naturally growing orchids Anacamptis coriophora (L.) R. M. Bateman, Pridgeon & M. W. Chase subsp. fragrans (Pollini), Anacamptis pyramidalis (L.) R. Ophrys holosericea (Burm.) Greuter and Serapias vomeracea (Burm. f.) B. were isolated by steam distillation and analyzed by GC/FID and GC/MS. Saturated hydrocarbons were quantified as the major constituents of the volatile fraction (47.87–81.57% of the total essential oil), of which long-chain monounsaturated hydrocarbons accounted from 9.20% to 32.04% of the total essential oil. Double bond position in linear alkenes was highlighted by dimethyl disulfide derivatization and MS fragmentation. Aldehydes (from 3.45 to 18.18% of the total essential oil), alcohols (from 0.19% to 13.48%), terpenes (from 0.98 to 2.50%) and acids (0.30 to 2.57%) were also detected. These volatiles compounds may represent a particular feature of these plant species, playing a critical role in the interaction with pollinators. DPPH assay evaluating the antioxidant activity of the essential oils was carried out, showing a dose-dependent antioxidant activity. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

Back to TopTop