Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = North Atlantic forecast degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7802 KiB  
Article
Anomalous Behavior in Weather Forecast Uncertainty: Implications for Ship Weather Routing
by Marijana Marjanović, Jasna Prpić-Oršić, Anton Turk and Marko Valčić
J. Mar. Sci. Eng. 2025, 13(6), 1185; https://doi.org/10.3390/jmse13061185 - 17 Jun 2025
Viewed by 1105
Abstract
Ship weather routing is heavily dependent on weather forecasts. However, the predictive nature of meteorological models introduces an unavoidable level of uncertainty which, if not accounted for, can compromise navigational safety, operational efficiency, and environmental impact. This study examines the temporal degradation of [...] Read more.
Ship weather routing is heavily dependent on weather forecasts. However, the predictive nature of meteorological models introduces an unavoidable level of uncertainty which, if not accounted for, can compromise navigational safety, operational efficiency, and environmental impact. This study examines the temporal degradation of forecast accuracy across certain oceanographic and atmospheric variables, using a six-month dataset for the area of North Atlantic provided by the National Oceanic and Atmospheric Administration (NOAA). The analysis reveals distinct variable-specific uncertainty trends with wind speed forecasts exhibiting significant temporal fluctuation (RMSE increasing from 0.5 to 4.0 m/s), while significant wave height forecasts degrade in a more stable and predictable pattern (from 0.2 to 0.9 m). Confidence intervals also exhibit non-monotonic evolution, narrowing by up to 15% between 96–120-h lead times. To address these dynamics, a Python-based framework combines distribution-based modeling with calibrated confidence intervals to generate uncertainty bounds that evolve with forecast lead time (R2 = 0.87–0.93). This allows uncertainty to be quantified not as a static estimate, but as a function sensitive to both variable type and prediction horizon. When integrated into routing algorithms, such representations allow for route planning strategies that are not only more reflective of real-world meteorological limitations but also more robust to evolving weather conditions, demonstrated by a 3–7% increase in travel time in exchange for improved safety margins across eight test cases. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop