Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = NiMoO4/3D-rGO nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3577 KB  
Article
Synthesis of a NiMoO4/3D-rGO Nanocomposite via Starch Medium Precipitation Method for Supercapacitor Performance
by Shahrzad Arshadi Rastabi, Rasoul Sarraf Mamoory, Nicklas Blomquist, Manisha Phadatare and Håkan Olin
Batteries 2020, 6(1), 5; https://doi.org/10.3390/batteries6010005 - 15 Jan 2020
Cited by 22 | Viewed by 6914
Abstract
This paper presents research on the synergistic effects of nickel molybdate and reduced graphene oxide as a nanocomposite for further development of energy storage systems. An enhancement in the electrochemical performance of supercapacitor electrodes occurs by synthesizing highly porous structures and achieving more [...] Read more.
This paper presents research on the synergistic effects of nickel molybdate and reduced graphene oxide as a nanocomposite for further development of energy storage systems. An enhancement in the electrochemical performance of supercapacitor electrodes occurs by synthesizing highly porous structures and achieving more surface area. In this work, a chemical precipitation technique was used to synthesize the NiMoO4/3D-rGO nanocomposite in a starch media. Starch was used to develop the porosities of the nanostructure. A temperature of 350 °C was applied to transform graphene oxide sheets to reduced graphene oxide and remove the starch to obtain the NiMoO4/3D-rGO nanocomposite with porous structure. The X-ray diffraction pattern of the NiMoO4 nano particles indicated a monoclinic structure. Also, the scanning electron microscope observation showed that the NiMoO4 NPs were dispersed across the rGO sheets. The electrochemical results of the NiMoO4/3D-rGO electrode revealed that the incorporation of rGO sheets with NiMoO4 NPs increased the capacity of the nanocomposite. Therefore, a significant increase in the specific capacity of the electrode was observed with the NiMoO4/3D-rGO nanocomposite (450 Cg−1 or 900 Fg−1) when compared with bare NiMoO4 nanoparticles (350 Cg−1 or 700 Fg−1) at the current density of 1 A g−1. Our findings show that the incorporation of rGO and NiMoO4 NP redox reactions with a porous structure can benefit the future development of supercapacitors. Full article
(This article belongs to the Special Issue Electrochemical Capacitors)
Show Figures

Figure 1

12 pages, 3257 KB  
Article
Synthesis of NiMoO4/3D-rGO Nanocomposite in Alkaline Environments for Supercapacitor Electrodes
by Shahrzad Arshadi Rastabi, Rasoul Sarraf Mamoory, Fatemeh Dabir, Nicklas Blomquist, Manisha Phadatare and Håkan Olin
Crystals 2019, 9(1), 31; https://doi.org/10.3390/cryst9010031 - 9 Jan 2019
Cited by 20 | Viewed by 5618
Abstract
Although Graphene oxide (GO)-based materials is known as a favorable candidate for supercapacitors, its conductivity needs to be increased. Therefore, this study aimed to investigate the performance of GO-based supercapicitor with new methods. In this work, an ammonia solution has been used to [...] Read more.
Although Graphene oxide (GO)-based materials is known as a favorable candidate for supercapacitors, its conductivity needs to be increased. Therefore, this study aimed to investigate the performance of GO-based supercapicitor with new methods. In this work, an ammonia solution has been used to remove the oxygen functional groups of GO. In addition, a facile precipitation method was performed to synthesis a NiMoO4/3D-rGO electrode with purpose of using synergistic effects of rGO conductivity properties as well as NiMoO4 pseudocapacitive behavior. The phase structure, chemical bands and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), Raman spectroscopy, and field emission secondary electron microscopy (FE-SEM). The electrochemical results showed that the NiMoO4/3D-rGO(II) electrode, where ammonia has been used during the synthesis, has a capacitive performance of 932 Fg−1. This is higher capacitance than NiMoO4/3D-rGO(I) without using ammonia. Furthermore, the NiMoO4/3D-rGO(II) electrode exhibited a power density of up to 17.5 kW kg−1 and an energy density of 32.36 Wh kg−1. These results showed that ammonia addition has increased the conductivity of rGO sheets, and thus it can be suggested as a new technique to improve the capacitance. Full article
Show Figures

Figure 1

Back to TopTop