Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Nasca geoglyphs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7981 KB  
Article
Astronomical Investigation to Verify the Calendar Theory of the Nasca Lines
by Christiane Richter, Bernd Teichert and Karel Pavelka
Appl. Sci. 2021, 11(4), 1637; https://doi.org/10.3390/app11041637 - 11 Feb 2021
Cited by 1 | Viewed by 10145
Abstract
As in many regions of the world, astronomy also played a major role in the ancient Peruvian cultures. However, the discussion of the astronomical relevance of the Nasca geoglyphs is very controversial. A really precise and extensive investigation of astronomical phenomena has not [...] Read more.
As in many regions of the world, astronomy also played a major role in the ancient Peruvian cultures. However, the discussion of the astronomical relevance of the Nasca geoglyphs is very controversial. A really precise and extensive investigation of astronomical phenomena has not yet taken place; the necessary data were simply missing. In the Nasca project Dresden, these data have been recorded in recent years and stored in an Oracle database. In the very first step, all geoglyphs with an astronomical orientation documented by Maria Reiche were checked and verified. Subsequently, all lines of the entity “straight line” were systematically examined with regard to the celestial bodies of the Sun and bright stars. For this purpose, on the one hand, the ellipsoidal azimuths of all straight lines were calculated and, on the other hand, the elevation angles in relation to the horizon with the help of digital terrain models (DTM) were determined. Corrections for refraction, the curvature of the Earth, visibility and atmospheric disturbances were largely considered. The azimuths of the celestial bodies during the Nasca period were calculated with software developed in-house (theses by students) and compared with those of the lines. As a result, it was possible to establish that there are individual straight lines that are aligned with the Sun and the seven randomly selected bright stars. However, the number of hits found does not justify the theory that the Nasca Pampas are an astronomical calendar system. Full article
(This article belongs to the Special Issue Analyses in Geomatics: Processing Spatial Data on History and Today)
Show Figures

Figure 1

20 pages, 7343 KB  
Article
High Resolution Drone Surveying of the Pista Geoglyph in Palpa, Peru
by Karel Pavelka, Jaroslav Šedina and Eva Matoušková
Geosciences 2018, 8(12), 479; https://doi.org/10.3390/geosciences8120479 - 13 Dec 2018
Cited by 18 | Viewed by 7405
Abstract
Currently, satellite images can be used to document historical or archaeological sites in areas that are distant, dangerous, or expensive to visit, and they can be used instead of basic fieldwork in several cases. Nowadays, they have final resolution on 35–50 cm, which [...] Read more.
Currently, satellite images can be used to document historical or archaeological sites in areas that are distant, dangerous, or expensive to visit, and they can be used instead of basic fieldwork in several cases. Nowadays, they have final resolution on 35–50 cm, which can be limited for searching of fine structures. Results using the analysis of very high resolution (VHR) satellite data and super resolution data from drone on an object nearby Palpa, Peru are discussed in this article. This study is a part of Nasca project focused on using satellite data for documentation and the analysis of the famous geoglyphs in Peru near Palpa and Nasca, and partially on the documentation of other historical objects. The use of drone shows advantages of this technology to achieve high resolution object documentation and analysis, which provide new details. The documented site was the “Pista” geoglyph. Discovering of unknown geoglyphs (a bird, a guinea pig, and other small drawings) was quite significant in the area of the well-known geoglyph. The new data shows many other details, unseen from the surface or from the satellite imagery, and provides the basis for updating current knowledge and theories about the use and construction of geoglyphs. Full article
Show Figures

Figure 1

13 pages, 40292 KB  
Article
Tracking Human-Induced Landscape Disturbance at the Nasca Lines UNESCO World Heritage Site in Peru with COSMO-SkyMed InSAR
by Francesca Cigna and Deodato Tapete
Remote Sens. 2018, 10(4), 572; https://doi.org/10.3390/rs10040572 - 8 Apr 2018
Cited by 28 | Viewed by 8035
Abstract
The “Lines and Geoglyphs of Nasca and Palpa” in Peru are among the most well-known UNESCO World Heritage Sites globally, and an exemplar of site where heritage assets cannot be separated from their natural and anthropogenic environment. The site is exposed to interactions [...] Read more.
The “Lines and Geoglyphs of Nasca and Palpa” in Peru are among the most well-known UNESCO World Heritage Sites globally, and an exemplar of site where heritage assets cannot be separated from their natural and anthropogenic environment. The site is exposed to interactions with natural processes, as well as human presence. In this work, 3-m resolution synthetic aperture radar (SAR) StripMap HIMAGE HH-polarised scenes acquired by the X-band COSMO-SkyMed constellation are exploited to track two events of human-induced landscape disturbance that occurred in December 2014 and January 2018. Pre-, cross-, and post-event interferometric SAR (InSAR) pairs characterised by small temporal and normal baselines allow the detection of temporal decorrelation associated with the two events, the extent and time reference of which match with online photographic and video evidence, published literature, web news, and press releases by the Ministry of Culture in Peru. Further elements enhancing the understanding of the 2018 event come from 10-m resolution Sentinel-2B satellite data that reveal the occurrence of apparent changes of surface reflectance due to uncovering of the light grey-yellow clay underneath the darker pebble constituting the fragile surface of the Pampa de Jumana. This scientific study confirms that SAR imagery archives, such as those being built by COSMO-SkyMed for Nasca, prove valuable for the retrospective analysis and digital recording of human-induced landscape disturbance events from space. These archives therefore act as essential sources of geospatial information on the conservation history of heritage sites and assets. Full article
Show Figures

Graphical abstract

19 pages, 10563 KB  
Article
Detecting Landscape Disturbance at the Nasca Lines Using SAR Data Collected from Airborne and Satellite Platforms
by Douglas C. Comer, Bruce D. Chapman and Jacob A. Comer
Geosciences 2017, 7(4), 106; https://doi.org/10.3390/geosciences7040106 - 16 Oct 2017
Cited by 13 | Viewed by 6836
Abstract
We used synthetic aperture radar (SAR) data collected over Peru’s Lines and Geoglyphs of the Nasca and Palpa World Heritage Site to detect and measure landscape disturbance threatening world-renowned archaeological features and ecosystems. We employed algorithms to calculate correlations between pairs of SAR [...] Read more.
We used synthetic aperture radar (SAR) data collected over Peru’s Lines and Geoglyphs of the Nasca and Palpa World Heritage Site to detect and measure landscape disturbance threatening world-renowned archaeological features and ecosystems. We employed algorithms to calculate correlations between pairs of SAR returns, collected at different times, and generate correlation images. Landscape disturbances even on the scale of pedestrian travel are discernible in correlation images generated from airborne, L-band SAR. Correlation images derived from C-band SAR data collected by the European Space Agency’s Sentinel-1 satellites also provide detailed landscape change information. Because the two Sentinel-1 satellites together have a repeat pass interval that can be as short as six days, products derived from their data can not only provide information on the location and degree of ground disturbance, but also identify a time window of about one to three weeks during which disturbance must have occurred. For Sentinel-1, this does not depend on collecting data in fine-beam modes, which generally sacrifice the size of the area covered for a higher spatial resolution. We also report on pixel value stretching for a visual analysis of SAR data, quantitative assessment of landscape disturbance, and statistical testing for significant landscape change. Full article
(This article belongs to the Special Issue Remote Sensing and Geosciences for Archaeology)
Show Figures

Figure 1

Back to TopTop