Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Nannocystaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1883 KiB  
Article
Genomic Analysis of the Rare Slightly Halophilic Myxobacterium “Paraliomyxa miuraensis” SMH-27-4, the Producer of the Antibiotic Miuraenamide A
by Ying Liu and Makoto Ojika
Microorganisms 2023, 11(2), 371; https://doi.org/10.3390/microorganisms11020371 - 1 Feb 2023
Cited by 5 | Viewed by 2082
Abstract
Halophilic/halotolerant myxobacteria are extremely rare bacteria but an important source of novel bioactive secondary metabolites as drug leads. A slightly halophilic myxobacterium, “Paraliomyxa miuraensis” SMH-27-4, the producer of the antifungal antibiotic miuraenamide A, was considered to represent a novel genus. This [...] Read more.
Halophilic/halotolerant myxobacteria are extremely rare bacteria but an important source of novel bioactive secondary metabolites as drug leads. A slightly halophilic myxobacterium, “Paraliomyxa miuraensis” SMH-27-4, the producer of the antifungal antibiotic miuraenamide A, was considered to represent a novel genus. This study aimed to use the whole-genome sequence of this difficult-to-culture bacterium to provide genomic evidence supporting its taxonomy and to explore its potential as a novel secondary metabolite producer and its predicted gene functions. The draft genome was sequenced and de novo assembled into 164 contigs (11.8 Mbp). The 16S rRNA gene sequence-based and genome sequence-based phylogenetic analyses supported that this strain represents a novel genus of the family Nannocystaceae. Seventeen biosynthetic gene clusters (BGCs) were identified, and only five of them show some degree of similarity with the previously annotated BGCs, suggesting the great potential of producing novel secondary metabolites. The comparative genomic analysis within the family Nannocystaceae revealed the distribution of its members’ gene functions. This study unveiled the novel genomic features and potential of the secondary metabolite production of this myxobacterium. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop