Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = NaHDESs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1284 KB  
Article
Green Extraction of Carotenoids from Pumpkin By-Products Using Natural Hydrophobic Deep Eutectic Solvents: Preliminary Insights
by Lucia Sportiello, Emanuele Marchesi, Roberta Tolve and Fabio Favati
Molecules 2025, 30(3), 548; https://doi.org/10.3390/molecules30030548 - 25 Jan 2025
Cited by 11 | Viewed by 2949
Abstract
Natural hydrophobic deep eutectic solvents (NaHDESs), composed of natural components like menthol, fatty acids, and organic acids, are sustainable alternatives to conventional solvents for extracting carotenoids from agro-industrial by-products. This study assessed the performance of nine NaHDESs for extracting β-carotene from pumpkin peels, [...] Read more.
Natural hydrophobic deep eutectic solvents (NaHDESs), composed of natural components like menthol, fatty acids, and organic acids, are sustainable alternatives to conventional solvents for extracting carotenoids from agro-industrial by-products. This study assessed the performance of nine NaHDESs for extracting β-carotene from pumpkin peels, identifying DL-menthol/lactic acid (1:2) as the most effective solvent, achieving a yield of 0.823 ± 0.019 mg/mL of β-carotene, corresponding to 93.95% of the yield obtained using acetone. Optimization through Box–Behnken design (BBD) and response surface methodology (RSM) established ideal extraction conditions: a molar ratio of HBA:HBD at 1:4, a solvent-to-sample ratio of 26:1, and an extraction time of 30 min. These conditions maximized β-carotene recovery while minimizing energy consumption and process costs. Using NaHDESs facilitates the valorization of food waste, achieving extraction efficiencies of up to 25.05% of the theoretical carotenoid content in pumpkin peels. Their high performance and environmentally friendly profile underscore the potential of NaHDESs as sustainable alternatives to conventional solvents. Full article
(This article belongs to the Special Issue New Advances in Deep Eutectic Solvents, 2nd Edition)
Show Figures

Figure 1

42 pages, 1394 KB  
Review
Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs
by Mario Coscarella, Monica Nardi, Kalina Alipieva, Sonia Bonacci, Milena Popova, Antonio Procopio, Rosa Scarpelli and Svilen Simeonov
Antioxidants 2024, 13(1), 62; https://doi.org/10.3390/antiox13010062 - 29 Dec 2023
Cited by 30 | Viewed by 6600
Abstract
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green [...] Read more.
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green solvents to a larger audience. Among the most promising, surely DESs (deep eutectic solvents), NaDESs (natural deep eutectic solvents), HDESs (hydrophobic deep eutectic solvents), and HNaDESs (hydrophobic natural deep eutectic solvents), with their unique features, manifest a wide-range of applications, including their use as a means for the extraction of small bioactive compounds. In examining recent advancements, in this review, we want to focus our attention on some of the most interesting and novel ‘solvent-free‘ extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) in relation to the possibility of better exploiting DESs and NaDESs as plausible extracting solvents of the phenolic compounds (PCs) present in different matrices from olive oil components, such as virgin olive pomace, olive leaves and twigs, virgin and extra virgin olive oil (VOO and EVOO, respectively), and olive cake and olive mill wastewaters (OMWW). Therefore, the status of DESs and NaDESs is shown in terms of their nature, efficacy and selectivity in the extraction of bioactive phytochemicals such as secoiridoids, lignans, phenolic acids and alcohols. Related studies on experimental design and processes’ optimization of the most promising DESs/NaDESs are also reviewed. In this framework, an extensive list of relevant works found in the literature is described to consider DESs/NaDESs as a suitable alternative to petrochemicals in cosmetics, pharmaceutical, or food applications. Full article
Show Figures

Graphical abstract

Back to TopTop