Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = NRTI analog resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 770 KiB  
Article
Prevalence of Doravirine Resistance Mutations in a Large-Scale HIV-1 Transmitted Drug Resistance Survey in Buenos Aires, Argentina
by Diego Cecchini, Isabel Cassetti, Florencia Scarnato, Agustina Fiori, Jimena Nuevo, Clara Villaverde, Adriana Sucari, María C. Torroija, Emiliano Bissio, Gabriela Bugarin and Gustavo Lopardo
Viruses 2025, 17(5), 731; https://doi.org/10.3390/v17050731 - 20 May 2025
Viewed by 786
Abstract
Background: Argentina has reported moderate to high levels of transmitted drug resistance in people living with HIV/AIDS (PLWHA), mostly to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Doravirine (DOR) has a unique resistance profile and retains potent antiviral activity in the presence of the most [...] Read more.
Background: Argentina has reported moderate to high levels of transmitted drug resistance in people living with HIV/AIDS (PLWHA), mostly to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Doravirine (DOR) has a unique resistance profile and retains potent antiviral activity in the presence of the most prevalent NNRTI-associated resistant viruses. Scarce data exist regarding the frequency of DOR resistance-associated mutations (RAMs) in Latin America. We describe the prevalence of DOR RAMs in samples from adults PLWHA in Buenos Aires, Argentina, in the context of a survey of transmitted drug resistance (TDR). Material and Methods: A cross-sectional study was undertaken utilizing samples collected between 2017 and 2021 at two reference HIV clinics. Samples were analyzed for RAMs using the World Health Organization (WHO) mutation list. Mutations to DOR were assessed with the Stanford and Agence Nationale de Recherches sur le SIDA (ANRS) algorithms. Rilpivirine (RPV) RAMs were assessed using the Stanford algorithm. Susceptibility to NNRTIs was evaluated using the HIVdb Program with Stanford and ANRS criteria. Results: Samples from 1667 PLWHA were analyzed: 81.2% were male, with 52.6% identifying as men who have sex with men. According to the WHO list, the overall TDR was 12.1% (n = 203). The prevalence of RAMs was 10.1% (170/1667) for NNRTIs, 4% (67/1667) for nucleoside reverse-transcriptase inhibitors (NRTIs), and 1.7% (30/1667) for protease inhibitors (PIs). The most frequent NNRTI mutations were K103N (5.6%), G190A (0.89%), and K103S (0.77%). The prevalence of DOR RAMs was <2%, with the most common being Y188L (0.53%). Rilpivirine RAM prevalence was 6%. Susceptibility to DOR, RPV, efavirenz, and nevirapine as given by the Stanford algorithm was 97.4%, 92%, 91.4%, and 90.4%, respectively. The ANRS criteria yielded susceptibility rates of 98.3%, 93.3%, 92.3%, and 90.8%, respectively. Regarding NRTIs, thymidine analog mutations (including T215 revertants) were the most frequent RAMs. Among PIs, the most prevalent RAMs were M46L (0.47%) and V82A (0.35%). Conclusions: Our study shows the persistence of moderate to high levels of resistance to first-generation NNRTIs. Despite this, prevalence was low for DOR. Surveillance of TDR remains critical for recommendations of ART initiation. Full article
(This article belongs to the Special Issue Viral Resistance)
Show Figures

Figure 1

15 pages, 11029 KiB  
Article
Temporal Trends in HIV-1 Mutations Used for the Surveillance of Transmitted Drug Resistance
by Soo-Yon Rhee, Philip L. Tzou and Robert W. Shafer
Viruses 2021, 13(5), 879; https://doi.org/10.3390/v13050879 - 11 May 2021
Cited by 17 | Viewed by 2770
Abstract
In 2009, a list of nonpolymorphic HIV-1 drug resistance mutations (DRMs), called surveillance DRMs (SDRMs), was created to monitor transmitted drug resistance (TDR). Since 2009, TDR increased and antiretroviral therapy (ART) practices changed. We examined the changing prevalence of SDRMs and identified candidate [...] Read more.
In 2009, a list of nonpolymorphic HIV-1 drug resistance mutations (DRMs), called surveillance DRMs (SDRMs), was created to monitor transmitted drug resistance (TDR). Since 2009, TDR increased and antiretroviral therapy (ART) practices changed. We examined the changing prevalence of SDRMs and identified candidate SDRMs defined as nonpolymorphic DRMs present on ≥ 1 expert DRM list and in ≥0.1% of ART-experienced persons. Candidate DRMs were further characterized according to their association with antiretrovirals and changing prevalence. Among NRTI-SDRMs, tenofovir-associated mutations increased in prevalence while thymidine analog mutations decreased in prevalence. Among candidate NRTI-SDRMs, there were six tenofovir-associated mutations including three which increased in prevalence (K65N, T69deletion, K70G/N/Q/T). Among candidate NNRTI-SDRMs, six that increased in prevalence were associated with rilpivirine (E138K/Q, V179L, H221Y) or doravirine (F227C/L) resistance. With the notable exceptions of I47A and I50L, most PI-SDRMs decreased in prevalence. Three candidate PI-SDRMs were accessory darunavir-resistance mutations (L10F, T74P, L89V). Adding the candidate SDRMs listed above was estimated to increase NRTI, NNRTI, and PI TDR prevalence by 0.1%, 0.3%, and 0.3%, respectively. We describe trends in the prevalence of nonpolymorphic HIV-1 DRMs in ART-experienced persons. These data should be considered in decisions regarding SDRM list updates and TDR monitoring. Full article
(This article belongs to the Special Issue HIV Molecular Epidemiology for Prevention 2020)
Show Figures

Figure 1

15 pages, 520 KiB  
Review
The Lysine 65 Residue in HIV-1 Reverse Transcriptase Function and in Nucleoside Analog Drug Resistance
by Scott J. Garforth, Chisanga Lwatula and Vinayaka R. Prasad
Viruses 2014, 6(10), 4080-4094; https://doi.org/10.3390/v6104080 - 23 Oct 2014
Cited by 17 | Viewed by 6681
Abstract
Mutations in HIV-1 reverse transcriptase (RT) that confer nucleoside analog RT inhibitor resistance have highlighted the functional importance of several active site residues (M184, Q151 and K65) in RT catalytic function. Of these, K65 residue is notable due to its pivotal position in [...] Read more.
Mutations in HIV-1 reverse transcriptase (RT) that confer nucleoside analog RT inhibitor resistance have highlighted the functional importance of several active site residues (M184, Q151 and K65) in RT catalytic function. Of these, K65 residue is notable due to its pivotal position in the dNTP-binding pocket, its involvement in nucleoside analog resistance and polymerase fidelity. This review focuses on K65 residue and summarizes a substantial body of biochemical and structural studies of its role in RT function and the functional consequences of the K65R mutation. Full article
(This article belongs to the Special Issue HIV Drug Resistance)
Show Figures

Figure 1

20 pages, 888 KiB  
Review
HIV-1 RT Inhibitors with a Novel Mechanism of Action: NNRTIs that Compete with the Nucleotide Substrate
by Giovanni Maga, Marco Radi, Marie-Aline Gerard, Maurizio Botta and Eric Ennifar
Viruses 2010, 2(4), 880-899; https://doi.org/10.3390/v2040880 - 30 Mar 2010
Cited by 39 | Viewed by 16375
Abstract
HIV-1 reverse transcriptase (RT) inhibitors currently used in antiretroviral therapy can be divided into two classes: (i) nucleoside analog RT inhibitors (NRTIs), which compete with natural nucleoside substrates and act as terminators of proviral DNA synthesis, and (ii) non-nucleoside RT inhibitors (NNRTIs), which [...] Read more.
HIV-1 reverse transcriptase (RT) inhibitors currently used in antiretroviral therapy can be divided into two classes: (i) nucleoside analog RT inhibitors (NRTIs), which compete with natural nucleoside substrates and act as terminators of proviral DNA synthesis, and (ii) non-nucleoside RT inhibitors (NNRTIs), which bind to a hydrophobic pocket close to the RT active site. In spite of the efficiency of NRTIs and NNRTIs, the rapid emergence of multidrug-resistant mutations requires the development of new RT inhibitors with an alternative mechanism of action. Recently, several studies reported the discovery of novel non-nucleoside inhibitors with a distinct mechanism of action. Unlike classical NNRTIs, they compete with the nucleotide substrate, thus forming a new class of RT inhibitors: nucleotide-competing RT inhibitors (NcRTIs). In this review, we discuss current progress in the understanding of the peculiar behavior of these compounds. Full article
(This article belongs to the Special Issue HIV Drug Resistance 2010)
Show Figures

Graphical abstract

Back to TopTop