Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = N-aryl piperazine moiety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2931 KiB  
Article
Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs
by Freeha Hafeez, Ameer Fawad Zahoor, Azhar Rasul, Asim Mansha, Razia Noreen, Zohaib Raza, Kulsoom Ghulam Ali, Ali Irfan and Gamal A. El-Hiti
Molecules 2022, 27(15), 4776; https://doi.org/10.3390/molecules27154776 - 26 Jul 2022
Cited by 4 | Viewed by 2430
Abstract
Piperazine-based dithiocarbamates serve as important scaffolds for numerous pharmacologically active drugs. The current study investigates the design and synthesis of a series of dithiocarbamates with a piperazine unit as well as their biological activities. Under ultrasound conditions, the corresponding piperazine-1-carbodithioates 5a5j [...] Read more.
Piperazine-based dithiocarbamates serve as important scaffolds for numerous pharmacologically active drugs. The current study investigates the design and synthesis of a series of dithiocarbamates with a piperazine unit as well as their biological activities. Under ultrasound conditions, the corresponding piperazine-1-carbodithioates 5a5j were synthesized from monosubstituted piperazine 2 and N-phenylacetamides 4a4j in the presence of sodium acetate and carbon disulfide in methanol. The structures of the newly synthesized piperazines were confirmed, and their anti-lung carcinoma effects were evaluated. A cytotoxic assay was performed to assess the hemolytic and thrombolytic potential of the synthesized piperazines 5a5j. The types of substituents on the aryl ring were found to affect the anticancer activity of piperazines 5a5j. Piperazines containing 2-chlorophenyl (5b; cell viability = 25.11 ± 2.49) and 2,4-dimethylphenyl (5i; cell viability = 25.31 ± 3.62) moieties demonstrated the most potent antiproliferative activity. On the other hand, piperazines containing 3,4-dichlorophenyl (5d; 0.1%) and 3,4-dimethylphenyl (5j; 0.1%) rings demonstrated the least cytotoxicity. The piperazine with the 2,5-dimethoxyphenyl moiety (5h; 60.2%) showed the best thrombolytic effect. To determine the mode of binding, in silico modeling of the most potent piperazine (i.e., 5b) was performed, and the results were in accordance with those of antiproliferation. It exhibits a similar binding affinity to PQ10 and an efficient conformational alignment with the lipophilic site of PDE10A conserved for PQ10A. Full article
(This article belongs to the Special Issue In Silico Methods Applied in Drug and Pesticide Discovery)
Show Figures

Graphical abstract

11 pages, 4293 KiB  
Communication
Design, Synthesis, and Biological Evaluation of Novel Benzofuran Derivatives Bearing N-Aryl Piperazine Moiety
by Yulu Ma, Xi Zheng, Hui Gao, Chunping Wan, Gaoxiong Rao and Zewei Mao
Molecules 2016, 21(12), 1684; https://doi.org/10.3390/molecules21121684 - 9 Dec 2016
Cited by 41 | Viewed by 6901
Abstract
A series of novel hybrid compounds between benzofuran and N-aryl piperazine have been synthesized and screened in vitro for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages and for anticancer activity against three human tumor cell lines. The results demonstrated that derivative 16 [...] Read more.
A series of novel hybrid compounds between benzofuran and N-aryl piperazine have been synthesized and screened in vitro for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages and for anticancer activity against three human tumor cell lines. The results demonstrated that derivative 16 not only had inhibitory effect on the generation of NO (IC50 = 5.28 μM), but also showed satisfactory and selective cytotoxic activity against human lung cancer line (A549) and gastric cancer cell (SGC7901) (IC50 = 0.12 μM and 2.75 μM, respectively), which was identified as the most potent anti-inflammatory and anti-tumor agent in this study. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Scheme 1

Back to TopTop