Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = N-acyl thiourea derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3192 KiB  
Article
Contribution to the Synthesis, Characterization, Separation and Quantification of New N-Acyl Thiourea Derivatives with Antimicrobial and Antioxidant Potential
by Roxana Roman, Lucia Pintilie, Diana Camelia Nuță, Miron Teodor Căproiu, Florea Dumitrașcu, Irina Zarafu, Petre Ioniță, Ioana Cristina Marinaș, Luminița Măruțescu, Eleonora Kapronczai, Simona Ardelean and Carmen Limban
Pharmaceutics 2023, 15(10), 2501; https://doi.org/10.3390/pharmaceutics15102501 - 20 Oct 2023
Cited by 8 | Viewed by 2354
Abstract
The present study aimed to synthesize, characterize, and validate a separation and quantification method of new N-acyl thiourea derivatives (1a1o), incorporating thiazole or pyridine nucleus in the same molecule and showing antimicrobial potential previously predicted in silico. The [...] Read more.
The present study aimed to synthesize, characterize, and validate a separation and quantification method of new N-acyl thiourea derivatives (1a1o), incorporating thiazole or pyridine nucleus in the same molecule and showing antimicrobial potential previously predicted in silico. The compounds have been physiochemically characterized by their melting points, IR, NMR and MS spectra. Among the tested compounds, 1a, 1g, 1h, and 1o were the most active against planktonic Staphylococcus aureus and Pseudomonas aeruginosa, as revealed by the minimal inhibitory concentration values, while 1e exhibited the best anti-biofilm activity against Escherichia coli (showing the lowest value of minimal inhibitory concentration of biofilm development). The total antioxidant activity (TAC) assessed by the DPPH method, evidenced the highest values for the compound 1i, followed by 1a. A routine quality control method for the separation of highly related compounds bearing a chlorine atom on the molecular backbone (1g, 1h, 1i, 1j, 1m, 1n) has been developed and validated by reversed-phase high-performance liquid chromatography (RP—HPLC), the results being satisfactory for all validation parameters recommended by the ICH guidelines (i.e., system suitability, specificity, the limits of detection and quantification, linearity, precision, accuracy and robustness) and recommending it for routine separation of these highly similar compounds. Full article
Show Figures

Figure 1

25 pages, 3441 KiB  
Article
New N-acyl Thiourea Derivatives: Synthesis, Standardized Quantification Method and In Vitro Evaluation of Potential Biological Activities
by Roxana Roman, Lucia Pintilie, Miron Teodor Căproiu, Florea Dumitrașcu, Diana Camelia Nuță, Irina Zarafu, Petre Ioniță, Mariana Carmen Chifiriuc, Cornel Chiriță, Alina Moroșan, Marcela Popa, Coralia Bleotu and Carmen Limban
Antibiotics 2023, 12(5), 807; https://doi.org/10.3390/antibiotics12050807 - 25 Apr 2023
Cited by 14 | Viewed by 3839
Abstract
New N-acyl thiourea derivatives with heterocyclic rings have been synthesized by first obtaining isothiocyanate, which further reacted with a heterocyclic amine, characterized by (FT-IR, NMR spectroscopy and FT-ICR) and tested for their in vitro antimicrobial, anti-biofilm and antioxidant activities to obtain a drug [...] Read more.
New N-acyl thiourea derivatives with heterocyclic rings have been synthesized by first obtaining isothiocyanate, which further reacted with a heterocyclic amine, characterized by (FT-IR, NMR spectroscopy and FT-ICR) and tested for their in vitro antimicrobial, anti-biofilm and antioxidant activities to obtain a drug candidate in a lead-optimization process. From the tested compounds, those bearing benzothiazole (1b) and 6-methylpyridine (1d) moieties revealed anti-biofilm activity against E. coli ATCC 25922 at MBIC values of 625 µg/mL. Compound 1d exhibited the highest antioxidant capacity (~43%) in the in vitro assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Considering the in vitro results, the highest anti-biofilm and antioxidant activities were obtained for compound 1d. Therefore, a reversed-phase high-performance liquid chromatography (RP-HPLC) method has been optimized and validated for the quantitative determination of compound 1d. The detection and quantitation limits were 0.0174 μg/mL and 0.0521 μg/mL, respectively. The R2 correlation coefficient of the LOQ and linearity curves were greater than 0.99, over the concentration range of 0.05 μg/mL–40 μg/mL. The precision and accuracy of the analytical method were within 98–102%, confirming that the method is suitable for the quantitative determination of compound 1d in routine quality control analyses. Evaluating the results, the promising potential of the new N-acyl thiourea derivatives bearing 6-methylpyridine moiety will be further investigated for developing agents with anti-biofilm and antioxidant activities. Full article
(This article belongs to the Special Issue Synthesis and Biological Activity of Antimicrobial Agents, 2nd Volume)
Show Figures

Figure 1

20 pages, 3803 KiB  
Article
Investigation of Newly Synthesized Bis-Acyl-Thiourea Derivatives of 4-Nitrobenzene-1,2-Diamine for Their DNA Binding, Urease Inhibition, and Anti-Brain-Tumor Activities
by Nasima Arshad, Uzma Parveen, Pervaiz Ali Channar, Aamer Saeed, Waseem Sharaf Saeed, Fouzia Perveen, Aneela Javed, Hammad Ismail, Muhammad Ismail Mir, Atteeque Ahmed, Basit Azad and Ishaq Khan
Molecules 2023, 28(6), 2707; https://doi.org/10.3390/molecules28062707 - 16 Mar 2023
Cited by 15 | Viewed by 4324
Abstract
Bis-acyl-thiourea derivatives, namely N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N’-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and [...] Read more.
Bis-acyl-thiourea derivatives, namely N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N’-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds’ interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound–DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40–120 µM. Full article
(This article belongs to the Special Issue Biomolecules Interactions with Small Molecules)
Show Figures

Figure 1

25 pages, 2828 KiB  
Article
Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile
by Galina F. Makhaeva, Nadezhda V. Kovaleva, Natalia P. Boltneva, Elena V. Rudakova, Sofya V. Lushchekina, Tatiana Yu. Astakhova, Igor V. Serkov, Alexey N. Proshin, Eugene V. Radchenko, Vladimir A. Palyulin, Jan Korabecny, Ondrej Soukup, Sergey O. Bachurin and Rudy J. Richardson
Molecules 2022, 27(3), 1060; https://doi.org/10.3390/molecules27031060 - 4 Feb 2022
Cited by 19 | Viewed by 3852
Abstract
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment [...] Read more.
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5ce (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5ce appear promising for future optimization and development as multitarget anti-AD agents. Full article
(This article belongs to the Special Issue Recent Advances in the Modulation of Cholinergic Signaling)
Show Figures

Graphical abstract

15 pages, 5458 KiB  
Article
Design, Synthesis, and Docking Study of Acyl Thiourea Derivatives as Possible Histone Deacetylase Inhibitors with a Novel Zinc Binding Group
by Duraid H. Al-Amily and Mohammed Hassan Mohammed
Sci. Pharm. 2019, 87(4), 28; https://doi.org/10.3390/scipharm87040028 - 22 Oct 2019
Cited by 20 | Viewed by 5591
Abstract
Histone deacetylase inhibitors with zinc binding groups often exhibit drawbacks like non-selectivity or toxic effects. Thus, there are continuous efforts to modify the currently available inhibitors or to discover new derivatives to overcome these problems. One approach is to synthesize new compounds with [...] Read more.
Histone deacetylase inhibitors with zinc binding groups often exhibit drawbacks like non-selectivity or toxic effects. Thus, there are continuous efforts to modify the currently available inhibitors or to discover new derivatives to overcome these problems. One approach is to synthesize new compounds with novel zinc binding groups. The present study describes the utilization of acyl thiourea functionality, known to possess the ability to complex with metals, to be a novel zinc binding group incorporated into the designed histone deacetylase inhibitors. N-adipoyl monoanilide thiourea (4) and N-pimeloyl monoanilide thiourea (5) have been synthesized and characterized successfully. They showed inhibition of growth of human colon adenocarcinoma and mouse hepatoblastoma cells with low cytotoxic effect against normal human breast cells. Their binding mode to the active site of several histone deacetylases has been studied by docking and the results gave a preliminary indication that they could be successful histone deacetylase inhibitors. Full article
Show Figures

Graphical abstract

23 pages, 2117 KiB  
Article
Synthesis and Biological Evaluation of Novel Dehydroabietic Acid Derivatives Conjugated with Acyl-Thiourea Peptide Moiety as Antitumor Agents
by Le Jin, Hong-En Qu, Xiao-Chao Huang, Ying-Ming Pan, Dong Liang, Zhen-Feng Chen, Heng-Shan Wang and Ye Zhang
Int. J. Mol. Sci. 2015, 16(7), 14571-14593; https://doi.org/10.3390/ijms160714571 - 26 Jun 2015
Cited by 21 | Viewed by 5968
Abstract
A series of dehydroabietic acid (DHAA) acyl-thiourea derivatives were designed and synthesized as potent antitumor agents. The in vitro pharmacological screening results revealed that the target compounds exhibited potent cytotoxicity against HeLa, SK-OV-3 and MGC-803 tumor cell lines, while they showed lower cytotoxicity [...] Read more.
A series of dehydroabietic acid (DHAA) acyl-thiourea derivatives were designed and synthesized as potent antitumor agents. The in vitro pharmacological screening results revealed that the target compounds exhibited potent cytotoxicity against HeLa, SK-OV-3 and MGC-803 tumor cell lines, while they showed lower cytotoxicity against HL-7702 normal human river cells. Compound 9n (IC50 = 6.58 ± 1.11 μM) exhibited the best antitumor activity against the HeLa cell line and even displayed more potent inhibitory activity than commercial antitumor drug 5-FU (IC50 = 36.58 ± 1.55 μM). The mechanism of representative compound 9n was then studied by acridine orange/ethidium bromide staining, Hoechst 33,258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay and flow cytometry, which illustrated that this compound could induce apoptosis in HeLa cells. Cell cycle analysis indicated that compound 9n mainly arrested HeLa cells in the S phase stage. Further investigation demonstrated that compound 9n induced apoptosis of HeLa cells through a mitochondrial pathway. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop