Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Myrtaceae rust

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4415 KiB  
Article
Advances Towards Ex Situ Conservation of Critically Endangered Rhodomyrtus psidioides (Myrtaceae)
by Lyndle K. Hardstaff, Bryn Funnekotter, Karen D. Sommerville, Catherine A. Offord and Ricardo L. Mancera
Plants 2025, 14(5), 699; https://doi.org/10.3390/plants14050699 - 24 Feb 2025
Viewed by 1745
Abstract
Rhodomyrtus psidioides (G.Don) Benth. (Myrtaceae) is a critically endangered rainforest species from the east coast of Australia, where populations have severely and rapidly declined due to the effects of repeated myrtle rust infection. With very limited material available in the wild and freezing-sensitive [...] Read more.
Rhodomyrtus psidioides (G.Don) Benth. (Myrtaceae) is a critically endangered rainforest species from the east coast of Australia, where populations have severely and rapidly declined due to the effects of repeated myrtle rust infection. With very limited material available in the wild and freezing-sensitive seeds that have prevented storage in a seed bank, ex situ conservation of this exceptional species has proven difficult. Material from a seed orchard grown at the Australian Botanic Garden Mount Annan was successfully used to initiate three new accessions into tissue culture from cuttings, and to undertake cryopreservation experiments using a droplet-vitrification (DV) protocol for both seeds and cultured shoot tips. Use of seedling material for tissue culture initiation was very effective, with a 94–100% success rate for semi-hardwood explants and a 50–62% success rate for softwood explants. Although no survival of seeds after cryopreservation was observed, seeds of R. psidioides showed some tolerance of desiccation and exposure to cryoprotective agents. Regeneration after cryopreservation using a DV protocol was demonstrated in only one shoot tip precultured on basal medium containing 0.4 M sucrose and incubated in PVS2 for 20 min prior to immersion in liquid nitrogen. These results demonstrate the value of living collections in botanic gardens for conservation research, highlight the importance of germplasm choice for tissue culture initiation, and demonstrate the potential of cryobiotechnologies for the ex situ conservation of exceptional plant species. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

20 pages, 3987 KiB  
Article
Impacts of Myrtle Rust Induced Tree Mortality on Species and Functional Richness within Seedling Communities of a Wet Sclerophyll Forest in Eastern Australia
by Kristy Stevenson, Geoff Pegg, Jarrah Wills, John Herbohn and Jennifer Firn
Plants 2023, 12(10), 1970; https://doi.org/10.3390/plants12101970 - 12 May 2023
Cited by 3 | Viewed by 2462
Abstract
Austropuccinia psidii is an introduced plant pathogen known to have caused significant declines in populations of several Australian native Myrtaceae species. However, limited research has focused on the impacts of the pathogen on plant communities in the aftermath of its invasion. This study [...] Read more.
Austropuccinia psidii is an introduced plant pathogen known to have caused significant declines in populations of several Australian native Myrtaceae species. However, limited research has focused on the impacts of the pathogen on plant communities in the aftermath of its invasion. This study investigated the relationship between disease impact level, plant species diversity, and functional richness in seedling communities in a wet sclerophyll forest in southeast Queensland. A clear shift was found from early colonizer Myrtaceae species in the mid- and understory to a more diverse non-Myrtaceae seedling community indicative of secondary succession. Comparisons of key Myrtaceae species and the seedling community suggest that there may also be a shift towards species that produce drupes and larger seeds, and overall, a current reduction in fruit availability due to the dramatic loss of previously dominant species. Seedling diversity showed no significant correlation with tree mortality, possibly due to favorable rainfall conditions during the study period. The more subtle changes in forest composition, such as changes in fruit type and availability due to myrtle rust, however, could affect the visitation of local bird species in the short term and certainly reduce the store of early colonizing native shrub and tree species. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

13 pages, 2850 KiB  
Article
Morphoanatomical Changes in Eucalyptus grandis Leaves Associated with Resistance to Austropuccinia psidii in Plants of Two Ages
by Edson Luiz Furtado, André Costa da Silva, Érica Araújo Rodrigues Silva, Roberto Antônio Rodella, Marcus Alvarenga Soares, José Eduardo Serrão, Cristiane de Pieri and José Cola Zanuncio
Plants 2023, 12(2), 353; https://doi.org/10.3390/plants12020353 - 12 Jan 2023
Cited by 1 | Viewed by 2638
Abstract
The fungus Austropuccinia psidii infects young tissues of Eucalyptus plants until they are two years old in the nursery and field, causing Myrtaceae rust. The characteristics making older eucalypt leaves resistant to A. psidii and the reason for the low levels of this [...] Read more.
The fungus Austropuccinia psidii infects young tissues of Eucalyptus plants until they are two years old in the nursery and field, causing Myrtaceae rust. The characteristics making older eucalypt leaves resistant to A. psidii and the reason for the low levels of this pathogen in older plants need evaluations. The aim of this study was to evaluate the morphological differences between Eucalyptus grandis leaves of different growth stages and two plant ages to propose a visual phenological scale to classify E. grandis leaves according to their maturation stages and to evaluate the time of leaf maturation for young and adult plants. A scale, based on a morphological differentiation for E. grandis leaves, was made. The color, shape and size distinguished the leaves of the first five leaf pairs. Anatomical analysis showed a higher percentage of reinforced tissue, such as sclerenchyma-like tissue and collenchyma, greater leaf blade thickness, absence of lower palisade parenchyma in the mature leaves and a higher number of cavities with essential oils than in younger ones. Changes in anatomical characteristics that could reduce the susceptibility of older E. grandis leaves to A. psidii coincide with the time of developing leaf resistance. Reduced infection of this pathogen in older plants appears to be associated with a more rapid maturation of their leaf tissues. Full article
(This article belongs to the Special Issue Functional Plant Anatomy – Structure, Function and Environment)
Show Figures

Figure 1

15 pages, 356 KiB  
Review
Myrtaceae in Australia: Use of Cryobiotechnologies for the Conservation of a Significant Plant Family under Threat
by Lyndle K. Hardstaff, Karen D. Sommerville, Bryn Funnekotter, Eric Bunn, Catherine A. Offord and Ricardo L. Mancera
Plants 2022, 11(8), 1017; https://doi.org/10.3390/plants11081017 - 8 Apr 2022
Cited by 13 | Viewed by 4791
Abstract
The Myrtaceae is a very large and diverse family containing a number of economically and ecologically valuable species. In Australia, the family contains approximately 1700 species from 70 genera and is structurally and floristically dominant in many diverse ecosystems. In addition to threats [...] Read more.
The Myrtaceae is a very large and diverse family containing a number of economically and ecologically valuable species. In Australia, the family contains approximately 1700 species from 70 genera and is structurally and floristically dominant in many diverse ecosystems. In addition to threats from habitat fragmentation and increasing rates of natural disasters, infection by myrtle rust caused by Austropuccinia psidii is of significant concern to Australian Myrtaceae species. Repeated infections of new growth have caused host death and suppressed host populations by preventing seed set. Although most Myrtaceae species demonstrate orthodox seed storage behavior, exceptional species such as those with desiccation sensitive seed or from myrtle rust-suppressed populations require alternate conservation strategies such as those offered by cryobiotechnology. Targeting seven key Australian genera, we reviewed the available literature for examples of cryobiotechnology utilized for conservation of Myrtaceae. While there were only limited examples of successful cryopreservation for a few genera in this family, successful cryopreservation of both shoot tips and embryonic axes suggest that cryobiotechnology provides a viable alternative for the conservation of exceptional species and a potential safe storage method for the many Myrtaceae species under threat from A. psidii. Full article
(This article belongs to the Special Issue Plant Cryobiotechnology: Progress and Prospects)
16 pages, 2436 KiB  
Article
Both Constitutive and Infection-Responsive Secondary Metabolites Linked to Resistance against Austropuccinia psidii (Myrtle Rust) in Melaleuca quinquenervia
by Michelle C. Moffitt, Johanna Wong-Bajracharya, Louise S. Shuey, Robert F. Park, Geoff S. Pegg and Jonathan M. Plett
Microorganisms 2022, 10(2), 383; https://doi.org/10.3390/microorganisms10020383 - 7 Feb 2022
Cited by 7 | Viewed by 3772
Abstract
Austropuccinia psidii is a fungal plant pathogen that infects species within the Myrtaceae, causing the disease myrtle rust. Myrtle rust is causing declines in populations within natural and managed ecosystems and is expected to result in species extinctions. Despite this, variation in response [...] Read more.
Austropuccinia psidii is a fungal plant pathogen that infects species within the Myrtaceae, causing the disease myrtle rust. Myrtle rust is causing declines in populations within natural and managed ecosystems and is expected to result in species extinctions. Despite this, variation in response to A. psidii exist within some species, from complete susceptibility to resistance that prevents or limits infection by the pathogen. Untargeted metabolomics using Ultra Performance Liquid Chromatography with Ion Mobility followed by analysis using MetaboAnalyst 3.0, was used to explore the chemical defence profiles of resistant, hypersensitive and susceptible phenotypes within Melaleuca quinquenervia during the early stages of A. psidii infection. We were able to identify three separate pools of secondary metabolites: (i) metabolites classified structurally as flavonoids that were naturally higher in the leaves of resistant individuals prior to infection, (ii) organoheterocyclic and carbohydrate-related metabolites that varied with the level of host resistance post-infection, and (iii) metabolites from the terpenoid pathways that were responsive to disease progression regardless of resistance phenotype suggesting that these play a minimal role in disease resistance during the early stages of colonization of this species. Based on the classes of these secondary metabolites, our results provide an improved understanding of key pathways that could be linked more generally to rust resistance with particular application within Melaleuca. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop