Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Mutnovsky geothermal field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5002 KB  
Article
Efflorescent Sulphates with M+ and M2+ Cations from Fumarole and Active Geothermal Fields of Mutnovsky Volcano (Kamchatka, Russia)
by Elena S. Zhitova, Dmitry A. Khanin, Anton A. Nuzhdaev, Maria A. Nazarova, Rezeda M. Ismagilova, Vladimir V. Shilovskikh, Anastasia N. Kupchinenko, Ruslan A. Kuznetsov and Pavel S. Zhegunov
Minerals 2022, 12(5), 600; https://doi.org/10.3390/min12050600 - 10 May 2022
Cited by 10 | Viewed by 3913
Abstract
In this study, sulphate efflorescent minerals covering the surface of the Donnoe and Dachnoe fields of the Mutnovsky volcano are described. The minerals were precipitated on the argillic facies as the result of water–rock interaction and fumarole emission. A chemical composition of Ca, [...] Read more.
In this study, sulphate efflorescent minerals covering the surface of the Donnoe and Dachnoe fields of the Mutnovsky volcano are described. The minerals were precipitated on the argillic facies as the result of water–rock interaction and fumarole emission. A chemical composition of Ca, Ba, (NH4)+, Na-Fe3+, (NH4)+-Al, (NH4)+-Fe3+, Na-Al, K-Al, and K-Fe3+ sulphates was reported. Elements such as Sr, Mg, Co, Ni, Ti and P were found as isomorphic impurities. Ammonia species were concentrated around fumaroles. The mineral assemblage described herein is unique in relation to other geological settings and reflects the process of low-temperature mineral formation associated with volcanism. The thermal water contains cations such as H, Na, K, NH4, Ca, Mg, Fe2+, Fe3+, and Al in different proportions with pH ranging from 2.4 to 6.5 and the dominance of acidic waters. The gas condensate bears such cations as (NH4)+, Ca, and Mg and has a pH of ~5. Thus, the rest of the main cations are derived from the leaching of the host rocks. Among the identified phases, the alunite-supergroup minerals are more prone to isomorphism. The Ti, Co, and Ni impurities mark the unique geochemistry of thermal water at the Mutnovsky volcano. We postulate that the chemical composition of alunite-supergroup minerals reflects the types of hydrothermal occurrences and contains important information on the geochemistry of the hydrothermal process. Full article
(This article belongs to the Special Issue Advances in Low-Temperature Mineralogy and Geochemistry)
Show Figures

Figure 1

19 pages, 2571 KB  
Article
Diatoms in Volcanic Soils of Mutnovsky and Gorely Volcanoes (Kamchatka Peninsula, Russia)
by Alfiya Fazlutdinova, Yunir Gabidullin, Rezeda Allaguvatova and Lira Gaysina
Microorganisms 2021, 9(9), 1851; https://doi.org/10.3390/microorganisms9091851 - 31 Aug 2021
Cited by 14 | Viewed by 3387
Abstract
Volcanic activity has a great impact on terrestrial ecosystems, including soil algae in general and diatoms in particular. To understand the influence of volcanoes on the biodiversity of diatoms, it is necessary to explore the flora of these microorganisms in regions with high [...] Read more.
Volcanic activity has a great impact on terrestrial ecosystems, including soil algae in general and diatoms in particular. To understand the influence of volcanoes on the biodiversity of diatoms, it is necessary to explore the flora of these microorganisms in regions with high volcanic activity, which includes the Kamchatka peninsula. During the study on diatoms in the soils of Mutnovsky and Gorely volcanoes of Kamchatka, 38 taxa were found. The Mutnovsky volcano diatom flora was more diverse and accounted for 35 taxa. Eunotia curtagrunowii, Humidophila contenta, and Pinnularia borealis were the dominant species. In the Gorely volcano, only 9 species were identified, with Caloneis bacillum and Pinnularia borealis prevailing in the samples. Overall, the genera Pinnularia and Eunotia were the most diverse in the studied area. The diatom flora of the studied volcanoes comprises mostly cosmopolitan small-sized taxa with a wide range of ecological plasticity. Our data confirm the high adaptive potential of diatom algae and add new knowledge about the ecology and biogeography of this group of microorganisms. Full article
(This article belongs to the Special Issue Diversity of Extremophiles in Time and Space)
Show Figures

Figure 1

Back to TopTop