Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Michelson encryption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7567 KB  
Article
Classical Encryption Demonstration with BB84 Quantum Protocol-Inspired Coherent States Using Reduced Graphene Oxide
by Alexia Lopez-Bastida, Pablo Córdova-Morales, Donato Valdez-Pérez, Adrian Martinez-Rivas, José M. de la Rosa-Vázquez and Carlos Torres-Torres
Quantum Rep. 2025, 7(3), 35; https://doi.org/10.3390/quantum7030035 - 11 Aug 2025
Viewed by 736
Abstract
This study explores the integration of reduced graphene oxide (rGO) into an optoelectronic XOR logic gate to enhance BB84 protocol encryption in quantum communication systems. The research leverages the nonlinear optical properties of rGO, specifically its nonlinear refraction characteristics, in combination with a [...] Read more.
This study explores the integration of reduced graphene oxide (rGO) into an optoelectronic XOR logic gate to enhance BB84 protocol encryption in quantum communication systems. The research leverages the nonlinear optical properties of rGO, specifically its nonlinear refraction characteristics, in combination with a Michelson interferometer to implement an optoelectronic XOR gate. rGO samples were deposited using the Langmuir–Blodgett technique and characterized in morphology and structure. The optical setup utilized a frequency-modulated laser signal for the interferometer and a pulsed laser system that generates the quantum information carrier. This integration of quantum encryption with nonlinear optical materials offers enhanced security against classical attacks while providing adaptability for various applications from secure communications to quantum AI. Full article
(This article belongs to the Special Issue Opportunities and Challenges in Quantum AI)
Show Figures

Figure 1

13 pages, 3982 KB  
Article
All-Optical Encryption Controlled by Multiphotonic Absorption in Carbon Nanotubes
by Alexia Lopez-Bastida, Cecilia Mercado-Zúñiga, Jhovani Bornacelli, José Manuel de la Rosa and Carlos Torres-Torres
Photonics 2024, 11(11), 1029; https://doi.org/10.3390/photonics11111029 - 31 Oct 2024
Cited by 3 | Viewed by 1375
Abstract
This study presents an all-optical approach based on an XOR logic gate for encryption by interference and the assistance of multiphotonic effects exhibited by carbon nanotubes. We integrate a Michelson interferometer to propose the encryption system. The key innovation lies in the use [...] Read more.
This study presents an all-optical approach based on an XOR logic gate for encryption by interference and the assistance of multiphotonic effects exhibited by carbon nanotubes. We integrate a Michelson interferometer to propose the encryption system. The key innovation lies in the use of multiwalled carbon nanotubes (MWCNT) to control the XOR operation through intensity-dependent nonlinear optical absorption. We introduce control based on nanosecond nonlinear optical absorption in MWCNT. By measuring irradiance propagation through thin-film samples of MWCNT, we demonstrate a threshold-based binary data recording system that is highly resistant to unauthorized access. The combination of interferometric response, MWCNT-based intensity control, and multicriteria decision analysis through nonlinear absorption presents a powerful and versatile approach to optical encryption. This method has the potential to be a base for secure communication systems and optical computing, with possible extensions to biological computing and microbiology. While challenges in power optimization and scaling remain, this research marks a significant step towards advanced, ultrafast encryption systems. Full article
Show Figures

Figure 1

12 pages, 3079 KB  
Article
Michelson Interferometric Methods for Full Optical Complex Convolution
by Haoyan Kang, Hao Wang, Jiachi Ye, Zibo Hu, Jonathan K. George, Volker J. Sorger, Maria Solyanik-Gorgone and Behrouz Movahhed Nouri
Nanomaterials 2024, 14(15), 1262; https://doi.org/10.3390/nano14151262 - 28 Jul 2024
Cited by 2 | Viewed by 1807
Abstract
Optical real-time data processing is advancing fields like tensor algebra acceleration, cryptography, and digital holography. This technology offers advantages such as reduced complexity through optical fast Fourier transform and passive dot-product multiplication. In this study, the proposed Reconfigurable Complex Convolution Module (RCCM) is [...] Read more.
Optical real-time data processing is advancing fields like tensor algebra acceleration, cryptography, and digital holography. This technology offers advantages such as reduced complexity through optical fast Fourier transform and passive dot-product multiplication. In this study, the proposed Reconfigurable Complex Convolution Module (RCCM) is capable of independently modulating both phase and amplitude over two million pixels. This research is relevant for applications in optical computing, hardware acceleration, encryption, and machine learning, where precise signal modulation is crucial. We demonstrate simultaneous amplitude and phase modulation of an optical two-dimensional signal in a thin lens’s Fourier plane. Utilizing two spatial light modulators (SLMs) in a Michelson interferometer placed in the focal plane of two Fourier lenses, our system enables full modulation in a 4F system’s Fourier domain. This setup addresses challenges like SLMs’ non-linear inter-pixel crosstalk and variable modulation efficiency. The integration of these technologies in the RCCM contributes to the advancement of optical computing and related fields. Full article
Show Figures

Figure 1

Back to TopTop